Меню

Зси вывод зсэ виды механической энергии работа мощность



Механическая энергия и её виды

Содержание

Механическая энергия и её виды……………………………………………………………………..5

Закон взаимосвязи, массы и энергии………………………………………………………………..7

Литература

Импульс тела

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила Под действием этой силы скорость тела изменилась на Следовательно, в течение времени Δt тело двигалось с ускорением

.

Из основного закона динамики (второго закона Ньютона) следует:

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с).

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы. Импульс силы также является векторной величиной.

В новых терминах второй закон Ньютона может быть сформулирован следующим образом:

Изменение импульса тела (количества движения) равно импульсу силы.

Обозначив импульс тела буквой второй закон Ньютона можно записать в виде

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу. Это векторное равенство может быть записано в проекциях на координатные оси:

.

Таким образом, изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось. Рассмотрим в качестве примера одномерноедвижение, т. е. движение тела по одной из координатных осей (например, оси OY). Пусть тело свободно падает с начальной скоростью υ под действием силы тяжести; время падения равно t. Направим ось OY вертикально вниз. Импульс силы тяжести Fт = mg за время t равен mgt. Этот импульс равен изменению импульса тела.

Этот простой результат совпадает с кинематической формулой для скорости равноускоренного движения. В этом примере сила оставалась неизменной по модулю на всем интервале времени t. Если сила изменяется по величине, то в выражение для импульса силы нужно подставлять среднее значение силы Fср на промежутке времени ее действия. Рис. 1.16.1 иллюстрирует метод определения импульса силы, зависящей от времени.

Выберем на оси времени малый интервал Δt, в течение которого сила F (t) остается практически неизменной. Импульс силы F (t) Δt за время Δt будет равен площади заштрихованного столбика. Если всю ось времени на интервале от 0 до t разбить на малые интервалы Δti, а затем просуммировать импульсы силы на всех интервалах Δti, то суммарный импульс силы окажется равным площади, которую образует ступенчатая кривая с осью времени. В пределе (Δti → 0) эта площадь равна площади, ограниченной графиком F (t) и осью t. Этот метод определения импульса силы по графику F (t) является общим и применим для любых законов изменения силы со временем. Математически задача сводится к интегрированию функции F (t) на интервале [0; t].

Импульс силы, график которой представлен на рис. 1.16.1, на интервале от t1 = 0 с до t2 = 10 с равен:

В этом простом примере

В некоторых случаях среднюю силу Fср можно определить, если известно время ее действия и сообщенный телу импульс. Например, сильный удар футболиста по мячу массой 0,415 кг может сообщить ему скорость υ = 30 м/с. Время удара приблизительно равно 8·10 –3 с.

Импульс p, приобретенный мячом в результате удара есть:

Следовательно, средняя сила Fср, с которой нога футболиста действовала на мяч во время удара, есть:

Это очень большая сила. Она приблизительно равна весу тела массой 160 кг.

Если движение тела во время действия силы происходило по некоторой криволинейной траектории, то начальный и конечный импульсы тела могут отличаться не только по модулю, но и по направлению. В этом случае для определения изменения импульса удобно использовать диаграмму импульсов, на которой изображаются вектора и , а также вектор построенный по правилу параллелограмма. В качестве примера на рис. 1.16.2 изображена диаграмма импульсов для мяча, отскакивающего от шероховатой стенки. Мяч массой m налетел на стенку со скоростью под углом α к нормали (ось OX) и отскочил от нее со скоростью под углом β. Во время контакта со стеной на мяч действовала некоторая сила направление которой совпадает с направлением вектора

Рисунок 1.16.2. Отскок мяча от шероховатой стенки и диаграмма импульсов

При нормальном падении мяча массой m на упругую стенку со скоростью ,после отскока мяч будет иметь скорость . Следовательно, изменение импульса мяча за время отскока равно

В проекциях на ось OX этот результат можно записать в скалярной форме Δpx = –2mυx. Ось OX направлена от стенки (как на рис. 1.16.2), поэтому υx 0. Следовательно, модуль Δpизменения импульса связан с модулем υ скорости мяча соотношением Δp = 2mυ.

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, силы трения, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

изменение импульса системы тел равно векторной сумме импульсов всех внешних сил, действующих на систему:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

импульс замкнутой системы есть величина постоянная:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

Читайте также:  Электрическая мощность не менее 10 квт

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие«ускорения». Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Работа и мощность

Энергетические характеристики движения вводятся на основе понятия механической работыили работы силы.

Если действующая на тело сила вызывает его перемещение s, то действие этой силы характеризуется величиной, называемой механической работой (или, сокращенно, простоработой).

Механическая работа А — скалярная величина, равная произведению модуля силы F, действующей на тело, и модуля перемещения s, совершаемого телом в направлении действия этой силы.

Если направления перемещения тела и приложенный силы не совпадают, то работу можно вычислить как произведение модулей силы и перемещения, умноженному на косинус угла α между векторами силы и перемещения

Работа является скалярной величиной. Она может быть как положительной (0° ≤ α 2 /2;

– потенциальная – Ep = mgh.

В формулах: m – масса тела, V – скорость его поступательного движения, g – ускорение падения, h – высота, на которую тело поднято над поверхностью земли.

Нахождение для системы тел полной механической энергии заключается в выявлении суммы ее потенциальной и кинетической составляющих.

Закон сохранения энергии

В общем случае тело обладает одновременно как кинетической, так и потенциальной энергией. Их сумму называют полной механической энергией:

Это понятие было введено в 1847 г. 26-летним немецким ученым Г. Гельмгольцем.

Что происходит с полной механической энергией по мере движения тела? Чтобы выяснить это, рассмотрим простое явление.

Бросим вертикально вверх мяч. Придав мячу скорость, мы тем самым сообщим ему некоторую кинетическую энергию. По мере движения мяча вверх его движение будет замедляться притяжением Земли и скорость, а вместе с ней и кинетическая энергия мяча будут становиться все меньше и меньше. Потенциальная же энергия мяча вместе с высотой h будет при этом возрастать. В высшей точке траектории (на максимальной высоте) потенциальная энергия мяча достигнет своего наибольшего значения, а кинетическая энергия окажется равной нулю. После этого мяч начнет падать вниз, постепенно набирая скорость. Кинетическая энергия при этом начнет увеличиваться, а потенциальная энергия (из-за уменьшения высоты) — убывать. В момент удара о землю кинетическая энергия мяча достигнет максимального значения, а потенциальная энергия обратится в нуль.

Итак, когда кинетическая энергия тела уменьшается, потенциальная энергия возрастает, и наоборот, когда кинетическая энергия тела увеличивается, его потенциальная энергия убывает. Изучение свободного падения тела (в отсутствие сопротивления воздуха) показывает, что всякое уменьшение одного из этих видов энергии сопровождается равным увеличением другого вида энергии. Полная же механическая энергия тела при этом сохраняется. В этом состоит закон сохранения механической энергии:

Полная механическая энергия тела, на которое не действуют силы трения и сопротивления, в процессе его движения остается неизменной.

Если обозначить начальную и конечную энергии тела через E и E’, то закон сохранения энергии можно выразить в виде следующего равенства:

Предположим, что свободно движущееся тело в начальный момент времени находилось на высоте h0 и имело при этом скорость v0. Тогда его полная

механическая энергия в этот момент времени была равна


Если спустя некоторое время рассматриваемое тело окажется на высоте h, имея скорость v то его полная механическая энергия станет равной

Согласно закону сохранения энергии, оба эти значения энергии должны совпадать. Поэтому

Если начальные значения h0 и v0 известны, то это уравнение позволяет найти скорость тела v на высоте h или, наоборот, высоту h, на которой тело будет иметь заданную скорость v. Масса тела при этом никакой роли играть не будет, так как в уравнении она сокращается.
Следует помнить, что полная механическая энергия сохраняется лишь тогда, когда отсутствуют силы трения и сопротивления. Если же эти силы присутствуют, то их действие приводит к уменьшению механической энергии.

1. Что называют полной механической энергией? 2. Сформулируйте закон сохранения механической энергии. 3. С какой энергией — кинетической или потенциальной — совпадает полная механическая энергия свободно падающего тела в момент удара о землю? 4. С какой энергией совпадает полная механическая энергия брошенного вертикально вверх мяча в момент, когда он оказывается в высшей точке своего полета? 5. Что происходит с полной механической энергией тела при наличии сил трения и сопротивления?

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование
Читайте также:  Мощность родительный падеж множественного числа

Как сказал.

Тестирование

Урок 11. Лекция 11. Работа. Мощность. Энергия. Закон сохранения энергии

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Если на тело действует сила и тело под действием этой силы перемещается, то говорят, что сила совершает работу.

Механическая работа – это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы и вектором перемещения (или скорости).

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α N=A/t

В Международной системе (СИ) единица мощности называется ватт (Вт). Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.

Внесистемная единица мощности 1 л.с.=735 Вт

Связь между мощностью и скоростью при равномерном движении:

N=A/t так как A=FScosα тогда N=(FScosα)/t, но S/t = v следовательно

N=Fvcos α

В технике используются единицы работы и мощности:

1 Вт·с = 1 Дж; 1Вт·ч = 3,6·10 3 Дж; 1кВт·ч = 3,6·10 6 Дж

Если тело способно совершить работу, то говорят, что оно обладает энергией.

Механическая энергия тела – это скалярная величина, равная максимальной работе, которая может быть совершена в данных условиях.

Обозначается Е Единица энергии в СИ [1Дж = 1Н*м]

Механическая работа есть мера изменения энергии в различных процессах А = ΔЕ.

Различают два вида механической энергии – кинетическая Ек и потенциальная Еp энергия.

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергий

Е = Ек + Еp

Кинетическая энергия – это энергия тела, обусловленная его движением.

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m, движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Если тело движется со скоростью , то для его полной остановки необходимо совершить работу

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятиепотенциальной энергии или энергии взаимодействия тел.

Потенциальная энергияэнергия тела, обусловленная взаимным расположением взаимодействующих между собой тел или частей одного тела.

Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями. Такие силы называются консервативными. Работа консервативных сил на замкнутой траектории равна нулю.

Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Потенциальная энергия тела в поле силы тяжести (потенциальная энергия тела, поднятого над землёй):

Ep = mgh

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Понятие потенциальной энергии можно ввести и для упругой силы. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x, или сначала удлинить ее на 2x, а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях упругая сила совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы A, взятой с противоположным знаком :

где k – жесткость пружины.

Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только силами тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно Ek2 – Ek1 = –(Ep2 – Ep1) или Ek1 + Ep1 = Ek2 + Ep2.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона.

Читайте также:  Как внешне определить мощность резистора

Сумму E = Ek + Ep называют полной механической энергией.

Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию, и наоборот, или переход энергии от одного тела к другому.

Е = Ек + Еp = const

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

Источник

Зси вывод зсэ виды механической энергии работа мощность

Раздел ОГЭ по физике: 1.18. Механическая энергия. Закон сохранения механической энергии. Формула для закона сохранения механической энергии в отсутствие сил трения. Превращение механической энергии при наличии силы трения.

1. Энергия тела – физическая величина, показывающая работу, которую может совершить рассматриваемое тело (за любое, в том числе неограниченное время наблюдения). Тело, совершающее положительную работу, теряет часть своей энергии. Если же положительная работа совершается над телом, энергия тела увеличивается. Для отрицательной работы – наоборот.

  • Энергией называют физическую величину, которая характеризует способность тела или системы взаимодействующих тел совершить работу.
  • Единица энергии в СИ 1 Джоуль (Дж).

2. Кинетической энергией называется энеpгия движущихся тел. Под движением тела следует понимать не только перемещение в пространстве, но и вращение тела. Кинетическая энергия тем больше, чем больше масса тела и скорость его движения (перемещения в пространстве и/или вращения). Кинетическая энеpгия зависит от тела, по отношению к которому измеряют скорость рассматриваемого тела.

  • Кинетическая энергия Ек тела массой m, движущегося со скоростью v, определяется по формуле Ек =mv 2 /2

3. Потенциальной энергией называется энергия взаимодействующих тел или частей тела. Различают потенциальную энергию тел, находящихся под действием силы тяжести, силы упругости, архимедовой силы. Любая потенциальная энергия зависит от силы взаимодействия и расстояния между взаимодействующими телами (или частями тела). Потенциальная энергия отсчитывается от условного нулевого уровня.

  • Потенциальной энергией обладают, например, груз, поднятый над поверхностью Земли, и сжатая пружина.
  • Потенциальная энергия поднятого груза Еп = mgh .
  • Кинетическая энергия может превращаться в потенциальную, и обратно.

4. Механической энергией тела называют сумму его кинетической и потенциальной энергий. Поэтому механическая энеpгия любого тела зависит от выбора тела, по отношению к которому измеряют скорость рассматриваемого тела, а также от выбора условных нулевых уровней для всех разновидностей имеющихся у тела потенциальных энергий.

  • Механическая энергия характеризует способность тела или системы тел совершить работу вследствие изменения скорости тела или взаимного положения взаимодействующих тел.

5. Внутренней энергией называется такая энергия тела, за счёт которой может совершаться механическая работа, не вызывая убыли механической энергии этого тела. Внутренняя энеpгия не зависит от механической энергии тела и зависит от строения тела и его состояния.

6. Закон сохранения и превращения энергии гласит, что энеpгия ниоткуда не возникает и никуда не исчезает; она лишь переходит из одного вида в другой или от одного тела к другому.

  • Закон сохранения механической энергии: если между телами системы действуют только силы тяготения и силы упругости, то сумма кинетической и потенциальной энергии остается неизменной, то есть механическая энергия сохраняется.

Таблица «Механическая энергия. Закон сохранения энергии».

7. Изменение механической энергии системы тел в общем случае равно сумме работы внешних по отношению к системе тел и работы внутренних сил трения и сопротивления: ΔW = Авнешн + Адиссип

Если система тел замкнутавнешн = 0), то ΔW = Адиссип, то есть полная механическая энергия системы тел меняется только за счёт работы внутренних диссипативных сил системы (сил трения).

Если система тел консервативна (то есть отсутствуют силы трения и сопротивления Атр = 0), то ΔW = Авнешн, то есть полная механическая энергия системы тел меняется только за счёт работы внешних по отношению к системе сил.

8. Закон сохранения механической энергии: В замкнутой и консервативной системе тел полная механическая энергия сохраняется: ΔW = 0 или Wп1 + Wк1 = Wп2 + Wк2 . Применим законы сохранения импульса и энергии к основным моделям столкновений тел.

  • Абсолютно неупругий удар (удар, при котором тела движутся после столкновения вместе, с одинаковой скоростью). Импульс системы тел сохраняется, а полная механическая энергия не сохраняется:

  • Абсолютно упругий удар (удар, при котором сохраняется механическая энергия системы). Сохраняются и импульс системы тел, и полная механическая энергия:

Удар, при котором тела до соударения движутся по прямой, проходящей через их центры масс, называется центральным ударом.

Схема «Механическая энергия.
Закон сохранения энергии. Углубленный уровень«

Механическая энергия.

Закон сохранения энергии

Конспект урока по физике «Механическая энергия. Закон сохранения энергии». Выберите дальнейшие действия:

Источник