Меню

Емкостное сопротивление формула мощности



Емкостное сопротивление

Использование ёмкости в цепи постоянного тока знакомо каждому электронщику. В этом случае работа детали описывается сравнительно простыми физическими законами. Несколько сложнее дела обстоят с переменным током, ведь при таком применении ёмкости уже возникает необходимость учитывать реактивное сопротивление.

Активная и реактивная составляющие

Формула ёмкостного сопротивления

При подаче на обкладки конденсатора переменного напряжения ток через этот элемент первоначально стремится к максимальному значению. По мере заряда прибора он постепенно снижается. В то же время вольтаж ведёт себя иначе, т.е. плавно возрастает от нуля до максимального значения.

Подобный эффект вызван ёмкостным сопротивлением. Оно зависит как от строения самого электронного прибора, так и от характеристик поданного на него переменного напряжения.

Формула расчёта сопротивления

Где:

  • XC – реактивное сопротивление, ом;
  • p – 3,14;
  • f – частота переменного напряжения, приложенного к обкладкам, Гц;
  • C – ёмкость, Ф.

Обратите внимание! Ёмкость элемента можно узнать по маркировке, имеющейся на его корпусе. Если она нечитаемая или стёрлась, то эта величина определяется с помощью мультиметра. Он должен быть с функцией замера ёмкости (прим. DT9208A).

Векторное представление ёмкости

Для простоты понимания процессов, происходящих в конденсаторе под действием источника переменного тока, удобно воспользоваться векторным представлением ёмкости.

Векторная диаграмма

В начальный момент зарядки конденсатора потенциал U на его обкладках равен нулю (точка a). В то же время ток I имеет своё максимальное значение (точка b). На этом этапе уже заметно отставание. Ток начинает снижаться со своей пиковой величины (участок bd). Напряжение в этот момент ещё не выросло и только подбирается к своему максимуму (ac).

Подобное отражается и на диаграмме справа. В момент, когда вольтаж U имеет своё наименьшее значение (e), ток I только начинает переходить в отрицательную область (f).

Емкостное сопротивление

Ёмкостное, оно же реактивное, сопротивление принципиально зависит от частоты напряжения. Данная связь хорошо видна на графике, приведённом ниже. Чем выше частота, тем меньше реактивное сопротивление. Очевидно это и из вышеприведённой формулы. Переменная f (частота) стоит в знаменателе. Поэтому с её увеличением Xc будет уменьшаться.

Зависимость от частоты

Емкость в цепи переменного тока

При подаче на конденсатор постоянного напряжения он постепенно зарядится до максимальной разности потенциалов на его обкладках. После этого ток через электронный компонент прекратится и, не считая ничтожной утечки, будет равняться нулю. Поэтому в цепи постоянного тока конденсатор имеет огромное сопротивление. При расчетах его величину принимают равной бесконечности.

Реактивное сопротивление имеет вполне исчисляемое значение. Его можно измерить с помощью осциллографа, генератора и постоянного резистора. Для этого потребуется собрать схему. В ней конденсатор образует с резистором делитель напряжения. С помощью осциллографа будет измеряться потенциал, который образуется на выводах ёмкости.

Для данной схемы вычисления имеют следующий вид.

Формула косвенного измерения

Здесь:

  • Ur – разность потенциалов на резисторе, В;
  • Uc – напряжение на обкладках, В;
  • R – сопротивление резистора, ом;
  • Xc – сопротивление ёмкости, ом;
  • I – ток, протекающий в цепи, А.

Косвенное измерение

Важно! Электрический кабель также обладает ёмкостью. Поэтому после снятия напряжения на нём остаётся некоторый заряд. Данное явление опасно для человека, особенно, если проводник до отключения находился под потенциалом 1000 В и выше.

Единицы измерения

Для правильного проведения всех расчетов важно понимать, какие величины в них используются, и что они обозначают:

  • Ёмкость – ед. изм. фарад, Ф;
  • Напряжение – вольт, В;
  • Сопротивление, в т.ч. и реактивное – ом, Ом;
  • Частота – герц, Гц;
  • Ток – ампер, А.

Пример расчета емкостного сопротивления

Для расчета понадобится большинство из перечисленных физических величин. Они обозначены на схеме и в качестве примера имеют следующие значения:

  • частота f = 50 Гц (типичная бытовая сеть);
  • ёмкость C = 33 нФ = 0,000000033 Ф = 3,3*10-8 Ф;

Схема для примера

Реактив будет рассчитываться по вышеописанной формуле:

В таком случае сопротивление конденсатора в цепи переменного тока равно 96,5 кОм. Если расписать все вычисления, то получится следующее.

Пример расчёта

Сама по себе формула не вызывает сложности. Однако для проведения вычислений необходимы знания школьного курса алгебры, т.е. умение работать со степенями, дробями и прочими алгоритмами математики. На практике имеет смысл немного схитрить. Чтобы каждый раз не городить сложные вычисления, можно воспользоваться одним из онлайн калькуляторов из сети Интернет. Подобные ресурсы позволяют произвести комплексный расчёт и выяснить некоторые другие параметры цепи.

Читайте также:  Мощность электроэнергии для дачи

Свойства ёмкостей

Основное свойство состоит в их способности накапливать и отдавать электрический заряд. Оба этих процесса происходят не мгновенно, а за вполне определённый период, который поддаётся расчету. Данное свойство используется для создания различных времязадающих RC цепей. Если зарядить конденсатор до некоторого значения, то время его разряда через резистор R будет зависеть от ёмкости C.

RC цепь

Ещё одно распространённое свойство конденсаторов – это возможность ограничивать переменный ток. Вызвана она реактивом этих элементов. Ёмкость, включенная в цепь переменного тока, ограничивает его до значения I = 2pfCU. Здесь U – напряжение источника питания.

Дополнительная информация. Ёмкость, подключенная параллельно с катушкой, имеющей индуктивный характер сопротивления, называется колебательным контуром. Данная цепь обладает высокой амплитудой колебаний на резонансной частоте. Она применяется для выделения из множества окружающих радиосигналов именно того, на который требуется настроить приём.

Сопротивление – это одна их характеристик конденсатора, подключенного к цепи переменного тока. Понимание процессов, происходящих с этим элементом в подобных схемах, существенно расширяет сферу его использования. Реактивное сопротивление конденсаторов учитывается как в простых бытовых электроприборах, так и в сложной вычислительной технике.

Видео

Источник

Изменение ёмкости керамических конденсаторов от температуры и напряжения, или как ваш конденсатор на 4,7мкФ превращается в 0,33мкФ

Этот пассивный элемент применяют для создания различных электротехнических схем, защитных и блокирующих устройств. Конденсатор в цепи переменного тока накапливает и возвращает энергию. С помощью этой публикации можно выяснить назначение и функции популярного радиокомпонента, изучить основные определения и особенности практического применения.


Электрические параметры, формулы для расчета и схема измерений при подключении конденсатора к источнику питания переменного тока

Свойства и выполняемые функции

Как подобрать конденсатор

Отмеченные накопительные способности определяются размерами пластин и расстоянием между ними, диэлектрическими характеристиками промежуточного слоя. Заряд сохраняется после отключения источника питания. Если подсоединить нагрузку, энергия может выполнять необходимые полезные функции.


Узкополосный фильтр

На рисунке показано устройство, которое «вырезает» небольшой участок спектра. Показанная на графике рабочая частота определяется параметрами цепочки, составленной из конденсатора и катушки индуктивности. В данном примере выполняются функции фильтрации входного сигнала.

Понятие полярности для конденсаторов и их выход из строя

Для улучшения рабочих параметров некоторые компоненты этой категории создают с применением промежуточного материала, пропитанного электролитом. Дополнительные слои создают из оксидов металлов и диэлектриков.


Конструкция электролитического конденсатора

Конденсатор — для чего нужен, устройство и принцип работы

Эти изделия подключают с обязательным соблюдением полярности. Специальная маркировка на корпусе предупреждает пользователей о наличии соответствующего ограничения. При ошибке в процессе монтажа конденсатор будут выведен из строя первым подключением. Кипение электролита может провоцировать повышенное напряжение.

К сведению. Насечками на крышке и предохранительным клапаном уменьшают разрушительный эффект при возникновении аварийной ситуации.

Емкостное сопротивление

Формула мощности электрического тока

Если подключить генератор синусоидального сигнала, с помощью осциллографа можно регистрировать увеличение силы тока по мере роста частоты. В ходе эксперимента нужно поддерживать одинаковую амплитуду на входе.


Изменение тока

В следующих разделах публикации рассказано о том, почему происходят отмеченные явления.

Понятие ёмкости

Рассмотренная выше схема стандартной конструкции подразумевает влияние следующих параметров на способность накопления определенного заряда (q):

  • площади (S) рабочих пластин или обкладок;
  • расстояния (d) между этими функциональными компонентами;
  • диэлектрических характеристик слоя (e – проницаемость).

Выяснив значения перечисленных величин, можно рассчитать напряженность:

Накопительные свойства (емкость) определяет следующая формула:

С= (e * S)/ d = q/U, где U – напряжение.

Для случая с переменным током нужно учесть изменение параметров за определенный интервал времени:

С учетом представленных выше зависимостей после простых математических преобразований можно создать алгоритм расчета силы тока, который будет проходить по цепи:

I = (C * ΔU)/Δt = f * C * Uo cos f * t = Io * sin (f * t + 90), где f – частота сигнала.

Векторное представление

Для наглядности процессов основные электрические параметры удобно представлять в векторной форме. Чтобы учесть замедление процессов обмена энергией, устанавливают понятие емкостного сопротивления (Xc).

Читайте также:  Радиотехника 001 усилитель мощности


Пояснение общих зависимостей

График и векторное представление демонстрируют отставание напряжения от тока, который будет течь в цепи на 90° (π/2).

К сведению. Обратный эффект наблюдается, если включить в схему катушку индукции. В этом случае напряжение будет опережать ток по фазе на аналогичный угол (90°).

Приведенные особенности подтверждают наличие реактивных компонентов конденсаторов и катушек, соответственно. В упрощенном виде сопротивление Хс выражается обратной зависимостью от частоты и емкости:

Представленную формулу можно использовать для расчета фильтров, колебательных контуров и других схем.

График ёмкостного сопротивления

Может ли через конденсатор протекать постоянный ток, отмечено выше. Наличие слоя диэлектрика предотвращает свободное протекание электронов через этот участок. Такой материал только накапливает заряды, но при одинаковых потенциалах эквивалентен разрыву проводника. При работе с переменным сигналом ток смещения в переделах этой зоны выполняет функцию «соединения» цепи.


Зависимость реактивного сопротивления конденсатора от частоты сигнала

Выводы:

  • отсутствие колебательных процессов (f=0) соответствует уменьшению до нуля проводимости, что аналогично разрыву цепи;
  • при увеличении емкости сопротивление конденсатора уменьшается;
  • чем выше частота, тем лучше проводимость.

Работа (мощность) в ёмкостной нагрузке

Выше отмечена цикличность энергетического обмена между источником переменного сигнала и подключенным конденсатором.


Мощность

Диаграммы демонстрируют процессы в конденсаторе на примере сжимания/ растяжения пружины внешней силой. В идеальных условиях энергетические потери отсутствуют. Однако в реальной ситуации нужно учесть потребление мощности активным сопротивлением соединительных проводов, иных компонентов схемы. Уменьшение КПД объясняется ухудшением функционального состояния диэлектрика.

Прочие параметры

Для уточненных расчетов применяют эквивалентную схему изделия со следующими компонентами:

  • емкость;
  • электрические сопротивления изоляционного слоя, контактных и проводящих элементов конструкции;
  • индуктивные реактивные составляющие.

К сведению. После отключения нагрузки на выводах конденсатора фиксируется небольшой рост напряжения (абсорбция заряда). Также существует зависимость рабочих параметров от температуры.

День зимнего солнцестояния

Характеристики прибора

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

Будет интересно➡ Что такое плоские конденсаторы

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними. Кроме ёмкости конденсатор характеризуется рядом параметров, такими как:

  • удельная ёмкость — определяет отношение величины ёмкости к массе диэлектрика;
  • рабочее напряжение — номинальное значение, которое может выдержать устройство при подаче его на обкладки элемента;
  • температурная стабильность — интервал, в котором ёмкость конденсатора практически не изменяется;
  • сопротивление изоляции — характеризуется саморазрядом устройства и определяется током утечки;
  • эквивалентное сопротивление — состоит из потерь, образуемых на выводах прибора и слое диэлектрика;
  • абсорбция — процесс возникновения разности потенциалов на обкладках после разряда устройства до нуля;
  • ёмкостное сопротивление — уменьшение проводимости при подаче переменного тока;
  • полярность — из-за физических свойств материала, используемого при изготовлении, конденсатор сможет правильно работать, только если к обкладкам приложен потенциал с определённым знаком;
  • эквивалентная индуктивность — паразитный параметр, появляющийся на контактах устройства и превращающий конденсатор в колебательный контур.


Таблицы максимальных значений емкости конденсаторов.

Конденсатор в цепях электрического тока

Следующие эксперименты можно проводить в домашней лаборатории. Они демонстрируют, как будет работать конденсатор с разными источниками питания.

Цепь постоянного тока

При подключении к аккумулятору накопление энергии происходит. Однако протекание тока в цепи блокирует диэлектрик.


Опыт с лампочкой

Цепь переменного тока

Собрав простую схему, можно увидеть отличия входного и выходного сигнала. По мере увеличения частоты на определенном уровне амплитуды становятся равными, а фазы совпадут.


Изучение параметров синусоидального сигнала

Что такое

Цепь, по которой протекает непостоянный ток, обладает полным сопротивлением. Вычисляется оно по сумме активного и реактивного сопротивлений, возведенных в квадрат.

Графическое изображение этой формулы представляет собой треугольник. Его катеты представлены активным и реактивным сопротивлениями, а гипотенуза полным электросопротивлением.


Графическое отображение формулы

Емкостное электросопротивление (Xc) является одним из видов реактивного сопротивления. Этот показатель характеризует противодействие электроемкости в цепи электротоку с переменными параметрами. Преобразование электроэнергии в тепловую в момент протекания электричества сквозь емкость не возникает (свойство реактивного сопротивления). Вместо этого осуществляется передача энергии электрического тока электрическому полю и обратно. Потерь энергии при таком обмене не происходит.

Читайте также:  Сравнение авто по мощности

Емкостное сопротивление конденсатора можно сравнить с кастрюлей, наполняемой жидкостью, при полном заполнении ее объема она переворачивается, выливая содержимое, а затем наполняется заново. После достижения максимального заряда конденсатора происходит разрядка, затем он заряжается вновь.

Дополнительная информация: Конденсатор цепи способен накопить лишь ограниченную величину заряда до перемены полярности напряжения. По данной причине непостоянный ток не падает до нуля, важное отличие от постоянного электричества. Низкие значения частоты тока соответствуют низким показателям заряда, накопленного конденсатором, низким значениям противодействия электричеству, что придает реактивные свойства.

По сути, Xc — это противостояние электродвижущей силы конденсатора, уровню его заряда.

Включение в цепи синусоидальной ЭДС

Конденсаторы в цепи постоянного тока не работают динамично. Поэтому имеет смысл изучать электрические параметры при подключении генератора синусоидального сигнала. В этой ситуации, кроме энергетических процессов, можно проверить частотные зависимости.

Виды включений

Параллельный способ соединения увеличивает емкость:

Для уменьшения основного функционального параметра используют последовательную схему:

1/Собщ = 1/С1 + 1/С2.

При подключении к источнику переменного тока конденсатор подойдет для решения следующих задач:

  • устранение постоянной компоненты сигнала;
  • ухудшение проводимости для определенного частотного диапазона;
  • настройка частоты колебательного контура и других радиотехнических схем.

При необходимости с помощью конденсатора можно гасить паразитные колебания, убирать импульсные помехи.

Простейший тип включения

Представленные выше формулы по току и напряжению можно изобразить следующим образом:

  • I = Im cos (f*t + π/2);
  • U = Uo * cosf*t.


Пояснения к описанию циклов

В простой схеме включения следует отметить следующие этапы рабочего процесса:

  1. увеличение напряжения с накоплением заряда током максимальной силы;
  2. уменьшение i(t) до нуля с одновременным достижением максимума Um;
  3. снижение U c одновременным разрядом конденсатора;
  4. достижение уровня Im c U =0.

Общий подход к выбору изделий и порядку расчетов корректируют с учетом целевого назначения. Если отсутствуют повышенные требования к точности, можно применить представленные параметры и формулы. Дополнительные данные можно получить из сопроводительной документации, на официальных сайтах производителей радиоэлектронных компонентов.

Особенности замены конденсаторов

К примеру, в наличии сеть переменного тока 12 В и две альтернативных группы последовательных конденсаторных элементов.

Конденсаторы подсоединяются в последовательный контур для увеличения напряжения, под которым они остаются работоспособными, но их общая емкость падает в соответствии с формулой для ее расчета.

Часто применяется смешанное соединение конденсаторов, чтобы создать нужную емкостную величину и увеличить напряжение, которое детали способны выдержать.

Можно привести вариант, как соединить несколько компонентов, чтобы выйти на нужные параметры. Если требуется конденсаторный элемент 80 мкФ при напряжении 50 В, но есть только конденсаторы 40 мкФ на 25 В, необходимо образовать следующую комбинацию:

  1. Два конденсатора 40 мкФ/25 В подсоединить последовательно, что позволит иметь в общей сложности 20 мкФ /50 В;
  2. Теперь вступает в действие параллельное включение конденсаторов. Пара конденсаторных групп, включенных последовательно, созданных на первом этапе, соединяются параллельно, получится 40 мкФ / 50 В;
  3. Две собранные в итоге группы соединить параллельно, в результате получим 80 мкФ/50 В.

Важно! Для того чтобы усилить конденсаторы по напряжению, возможно их объединить в последовательную электросхему. Увеличение общей емкостной величины достигается параллельным подключением.

Что необходимо учитывать при создании последовательной цепи:

  1. При соединениях конденсаторов оптимальный вариант – брать элементы с мало различающимися или с одинаковыми параметрами, вследствие большой разницы в напряжениях разряда;
  2. Для баланса токов утечки на каждый конденсаторный элемент (в параллель) включается уравнительное сопротивление.

Получение неполярного конденсатора

Получение неполярного конденсатора

Включение в последовательную цепь всегда должно происходить с соблюдением «плюса» и «минуса» конденсаторов. Если их соединить одноименными полюсами, то такое сочетание уже теряет поляризованность. При этом емкость созданной группы будет равна половине от емкостного значения одной из деталей. Такие конденсаторы возможно применять в качестве пусковых на электромоторах.

Источник