Меню

Единица измерения реактивной мощности по госту



Что такое реактивная мощность и как её рассчитать?

Многие потребители электроэнергии не подозревают того, что часть учтённого электричества расходуется бесполезно. В зависимости от вида нагрузки уровень потерь электроэнергии может достигать от 12 до 50%. При этом счетчики электроэнергии засчитывают эти потери, относя их к полезной работе, за что приходится платить. Виной завышения оплаты за потребление электроэнергии, не выполняющей полезной работы, является реактивная мощность, присутствующая в сетях переменных токов.

Чтобы понять, за что мы переплачиваем и как компенсировать влияние реактивных мощностей на работу электрических установок, рассмотрим причину появления реактивной составляющей при передаче электроэнергии. Для этого придётся разобраться в физике процесса, связанного с переменным напряжением.

Что такое реактивная мощность?

Для начала рассмотрим понятие электрической мощности. В широком смысле слова, этот термин означает работу, выполненную за единицу времени. По отношению к электрической энергии, понятие мощности немного откорректируем: под электрической мощностью будем понимать физическую величину, реально характеризующую скорость генерации тока или количество переданной либо потреблённой электроэнергии в единицу времени.

Понятно, что работа электричества в единицу времени определяется электрической мощностью, измеряемой в ваттах. Мгновенную мощность на участке цепи находят по формуле: P = U×I, где U и I – мгновенные значения показателей параметров напряжения и силы тока на данном участке.

При наличии в электрической цепи ёмкостных или индуктивных нагрузок, появляются паразитные токи, не участвующие в выполнении полезной работы. Мощность этих токов называют реактивной.

На индуктивных и ёмкостных нагрузках часть электроэнергии рассеивается в виде тепла, а часть препятствует выполнению полезной работы.

К устройствам с индуктивными нагрузками относятся:

  • электромоторы;
  • дроссели;
  • трансформаторы;
  • электромагнитные реле и другие устройства, содержащие обмотки.

Ёмкостными сопротивлениями обладают конденсаторы.

Физика процесса

Когда мы имеем дело с цепями постоянного тока, то говорить о реактивной мощности не приходится. В таких цепях значения мгновенной и полной мощности совпадают. Исключением являются моменты включения и отключения ёмкостных и индуктивных нагрузок.

Похожая ситуация происходит при наличии чисто активных сопротивлений в синусоидальных цепях. Однако если в такую электрическую цепь включены устройства с индуктивными или ёмкостными сопротивлениями, происходит сдвиг фаз по току и напряжению (см. рис.1).

При этом на индуктивностях наблюдается отставание тока по фазе, а на ёмкостных элементах фаза тока сдвигается так, что ток опережает напряжение. В связи с нарушением гармоники тока, полная мощность разлагается на две составляющие. Ёмкостные и индуктивные составляющие называют реактивными, бесполезными. Вторая составляющая состоит из активных мощностей.

Сдвиг фаз индуктивной нагрузкой

Рис. 1. Сдвиг фаз индуктивной нагрузкой

Угол сдвига фаз используется при вычислениях значений активных и реактивных ёмкостных либо индуктивных мощностей. Если угол φ = 0, что имеет место при резистивных нагрузках, то реактивная составляющая отсутствует.

Важно запомнить:

  • резистор потребляет исключительно активную мощность, которая выделяется в виде тепла и света;
  • катушки индуктивности провоцируют образование реактивной составляющей и возвращают её в виде магнитных полей;
  • Ёмкостные элементы (конденсаторы) являются причиной появления реактивных сопротивлений.

Треугольник мощностей и cos φ

Для наглядности изобразим полную мощность и её составляющие в виде векторов (см. рис. 2). Обозначим вектор полной мощности символом S, а векторам активной и реактивной составляющей присвоим символы P и Q, соответственно. Поскольку вектор S является суммой составляющих тока, то, по правилу сложения векторов, образуется треугольник мощностей.

Читайте также:  Котлы вайлант мощность от площади

Коэффициент мощности

Рис. 2. коэффициент мощности

Применяя теорему Пифагора, вычислим модуль вектора S:

Формула модуля вектора S

Отсюда можно найти реактивную составляющую:

Реактивная составляющаяРеактивная составляющая

Выше мы уже упоминали, что реактивная мощность зависит от сдвига фаз, а значит и от угла этого сдвига. Эту зависимость удобно выражать через cos φ. По определению cos φ = P/S. Данную величину называют коэффициентом мощности и обозначают Pf. Таким образом, Pf = cos φ = P/S.

Коэффициент мощности, то есть cos φ, является очень важной характеристикой, позволяющей оценить эффективность работы тока. Данная величина находится в промежутке от 0 до 1.

Если угол сдвига фаз принимает нулевое значение, то cos φ = 1, а это значит что P = S, то есть полная мощность состоит только из активной мощности, а реактивность отсутствует. При сдвиге фаз на угол π/2 , cos φ = 0, откуда следует, что в цепи господствуют только реактивные токи (на практике такая ситуация не возникает).

Из этого можно сделать вывод: чем ближе к 1 коэффициент Pf , тем эффективнее используется ток. Например, для синхронных генераторов приемлемым считается коэффициент от 0,75 до 0,85.

Формулы

Поскольку реактивная мощность зависит от угла φ, то для её вычисления применяется формула: Q = UI×sin φ. Единицей измерения реактивной составляющей является вар или кратная ей величина – квар.

Активную составляющую находят по формуле: P = U*I×cosφ. Тогда

Формула полной мощности

Зная коэффициент Pf (cos φ), мы можем рассчитать номинальную мощность потребителя тока по его номинальному напряжению, умноженному на значение силы потребляемого тока.

Способы компенсации

Мы уже выяснили, как влияют реактивные токи на работу устройств и оборудования с индуктивными или ёмкостными нагрузками. Для уменьшения потерь в электрических сетях с синусоидальным током их оборудуют дополнительными устройствами компенсации.

Принцип действия установок компенсации основан на свойствах индуктивностей и ёмкостей по сдвигу фаз в противоположные стороны. Например, если обмотка электромотора сдвигает фазу на угол φ, то этот сдвиг можно компенсировать конденсатором соответствующей ёмкости, который сдвигает фазу на величину – φ. Тогда результирующий сдвиг будет равняться нулю.

На практике компенсирующие устройства подключают параллельно нагрузкам. Чаще всего они состоят из блоков конденсаторов большой ёмкости, расположенных в отдельных шкафах. Одна из таких конденсаторных установок изображена на рисунке 3. На картинке видно группы конденсаторов, используемых для компенсации сдвигов напряжений в различных устройствах с индуктивными обмотками.

Устройство компенсации

Рис. 3. Устройство компенсации

Компенсацию реактивной мощности ёмкостными нагрузками хорошо иллюстрируют графики на рисунке 4. Обратите внимание на то, как эффективность компенсации зависит от напряжения сети. Чем выше сетевое напряжение, тем сложнее компенсировать паразитные токи (график 3).

Компенсация реактивной мощности с помощью конденсаторов

Рис. 4. Компенсация реактивной мощности с помощью конденсаторов

Устройства компенсации часто устанавливаются в производственных цехах, где работает много устройств на электроприводах. Потери электричества при этом довольно ощутимы, а качество тока сильно ухудшается. Конденсаторные установки успешно решают подобные проблемы.

Нужны ли устройства компенсации в быту?

На первый взгляд в домашней сети не должно быть больших реактивных токов. В стандартном наборе бытовых потребителей преобладают электрическая техника с резистивными нагрузками:

  • электрочайник (Pf = 1);
  • лампы накаливания (Pf = 1);
  • электроплита (Pf = 1) и другие нагревательные приборы;

Коэффициенты мощности современной бытовой техники, такой как телевизор, компьютер и т.п. близки к 1. Ими можно пренебречь.

Читайте также:  Номинальное давление вентилятора от мощности

Но если речь идёт о холодильнике (Pf = 0,65), стиральной машине и микроволновой печи, то уже стоит задуматься об установке синхронных компенсаторов. Если вы часто пользуетесь электроинструментом, сварочным аппаратом или у вас дома работает электронасос, тогда установка устройства компенсации более чем желательна.

Экономический эффект от установки таких устройств ощутимо скажется на вашем семейном бюджете. Вы сможете экономить около 15% средств ежемесячно. Согласитесь, это не так уж мало, учитывая тарифы не электроэнергию.

Попутно вы решите следующие вопросы:

  • уменьшение нагрузок на индуктивные элементы и на проводку;
  • улучшение качества тока, способствующего стабильной работе электронных устройств;
  • понижение уровня высших гармоник в бытовой сети.

Для того чтобы ток и напряжение работали синфазно, устройства компенсации следует размещать как можно ближе к потребителям тока. Тогда реальная отдача индуктивных электроприёмников будет принимать максимальные значения.

Видео в тему

Источник

Нормы качества электроэнергии и компенсация реактивной мощности в стандартизации РФ

Первое десятилетие нового века в аспекте генерации, транспорта электроэнергии и энергоснабжения охарактеризовалось кардинальными структурными изменениями в отрасли электроэнергетики, инициированными и поддержанными рядом законодательных и нормативно-правовых актов, к определяющим из которых правомерно отнести Федеральный закон № 35-ФЗ «Об электроэнергетике» от 26.03.2003, № 36 ФЗ «Об особенностях функционирования электроэнергетики в переходный период» от 26.03.2003, N 261-ФЗ (ред. от 03.07.2016) «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» от 23.11.2009, Постановления Правительства РФ № 861 и № 530 от 27.12.2004 и от 31.08.2006 соответственно, определившим правила ответственности в обеспечении качества электроэнергии субъектами электроэнергетики.

В целом можно говорить о тренде перехода на новый уровень генерации, транспорта, поставки электроэнергии с регламентированными нормами показателей качества, что, соответственно, инициировало процесс разработки новых стандартов, прямо или косвенно относящихся к качеству электроэнергии, хотя, следует признать, что даже базовый, морально устаревший ГОСТ 13109–97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» просуществовал вплоть до 0.1.07.2014 (до введения в действие ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения»), а его попытка замены в 2011 году ГОСТ Р 54149-2010 аналогичного названия по непонятным причинам претерпела неудачу.

Практически аналогичный подход к актуализации морально устаревших стандартов наблюдается в сегменте нормативно-правовых актов, регламентирующих компенсацию реактивной мощности и используемые в этих целях средства ( установки КРМ, УКРМ и пр.) в то время, как ключевые показатели качества электроэнергии во многом зависят, а зачастую определяются именно наличием или отсутствием перетоков реактивной мощности. Так, до сих пор производство установок и элементов установок компенсации реактивной мощности регулируется ГОСТ 27389-87 «Установки конденсаторные для компенсации реактивной мощности. Термины и определения. Общие технические требования», ГОСТ 12.2.007.5-75 «Конденсаторы силовые. Установки конденсаторные. Требования безопасности», ГОСТ 1282-88 «Конденсаторы для повышения коэффициента мощности. Общие технические условия» и т.д., хотя уже введены в действие ГОСТ IEC 61921-2013 «Конденсаторы силовые. Конденсаторные батареи для коррекции коэффициента мощности при низком напряжении», ГОСТ Р 51321.1-2007 «Устройства комплектные низковольтные распределения и управления. Часть 1. Устройства, испытанные полностью или частично. Общие технические требования и методы испытаний», а с января 2017 года вступит в силу ГОСТ Р 56744-2015 «Конденсаторы силовые. Установки конденсаторные низковольтные для повышения коэффициента мощности».

Читайте также:  Китайские ламповые усилители мощности

Показатели качества электроэнергии в новом и утратившим силу в РФ стандартах

Уже утративший свою силу в РФ ГОСТ 13109–97 в состав основных показателей качества электроэнергии систем электроснабжения общего назначения, присоединенных к Единой энергетической системе и изолированных систем электроснабжения общего назначения, включал:

  • отклонения напряжения в ±5% для нормально допустимых и ±10% для предельно допустимых отклонений от номинального напряжения электрической сети;

Рис. Отклонение напряжения по ГОСТ 13109–97

  • колебания напряжения (установившегося отклонения напряжения и диапазона изменений напряжения) в точках присоединения к электрическим сетям в 380/220 В не более ±10% от номинального напряжения;

Рис. Колебания напряжения по ГОСТ 13109–97

  • провал напряжения, величина которого в электрических сетях общего назначения с напряжением до 20 кВ не должна превышать 30 с;

Рис. Провал напряжения по ГОСТ 13109–97

  • отклонения частоты в пределах ±0,2 Гц для нормально допустимого и ±0,4 Гц для предельно допустимого отклонения от номинальной частоты электрической сети общего назначения;
  • временное перенапряжение, коэффициент которого (отношение максимального значения огибающей амплитудных значений напряжения за время перенапряжения к амплитуде номинального напряжения сети) не должен превышать 1.47;

Рис. Временное перенапряжение по ГОСТ 13109–97

  • несинусоидальность напряжения по коэффициенту искажения синусоидальности кривой напряжения и коэффициенту n-й гармонической составляющей напряжения, нормально и предельно допустимые значения которых не могут превышать 8% в точках общего присоединения к электрическим сетям с номинальным напряжением 380/220 В;

Рис. Несинусоидальность напряжения по ГОСТ 13109–97

  • импульс напряжения (коммутационный и грозовой) и несимметрия напряжения с коэффициентом несимметрии напряжений по обратной и по нулевой последовательности.

Рис. Импульс напряжения по ГОСТ 13109–97

Новый ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» в категории продолжительных изменений характеристик напряжения в показатели качества электроэнергии для сетей общего назначения включает:

  • отклонение частоты, которое в синхронизированных системах электроснабжения не должно превышать ±0,2 Гц в течение 95% времени интервала в одну неделю и ±0,4 Гц в течение 100% времени интервала в одну неделю, а в изолированных системах электроснабжения с автономными генераторными установками не должно превышать ±1 Гц в течение 95% времени интервала в одну неделю и ±5 Гц в течение 100% времени интервала в одну неделю;
  • положительные и отрицательные отклонения напряжения, которые в точке передачи электрической энергии не должны превышать 10% номинального (или согласованного) значения напряжения в течение 100% времени интервала в одну неделю;
  • колебания напряжения и фликер, кратковременная и длительная доза которого не должна превышать значения 1,38 и 1,0 соответственно в течение 100% времени интервала в одну неделю;
  • гармонические составляющие напряжения, усредненные значения которых нормированы в соответствующих таблицах по нечетным гармониками (кратным и не кратным 3), четным гармоникам и суммарным коэффициентам гармонических составляющих;
  • интергармонические составляющие напряжения, нормы которых пока рассматриваются;
  • несимметрия напряжений, значения коэффициентов которой по нулевой последовательности и по обратной последовательности не должны превышать 2% в течение 95% времени и % в течение 100% времени интервала в одну неделю соответственно;
  • напряжения сигналов, передаваемых по электрическим сетям, нормы которых пока тоже находятся в разработке.

Источник: Компания «Нюкон»

Источник