Меню

Взлетный стабилизатор что это



Система управления стабилизатором

Привет студент

Конструкция основных частей оперения — стабилизатора и киля — обычно подобна. Одинаковы по конструкции также рули высоты и рули направления. На крупных самолетах стабилизаторы выполняются, как правило, разъемными. Киль может быть изготовлен за одно целое с фюзеляжем или в виде отдельной части. Каркас оперения современных самолетов, как правило, выполняется металлическим. Обшивка киля и стабилизатора обычно жесткая (дюралюминиевая). Рули самолетов малых дозвуковых скоростей обшиваются полотном, что уменьшает их вес и упрощает конструкцию. На самолетах больших скоростей обшивка рулей так же, как и каркас, металлическая.

Киль и стабилизатор.

На небольших самолетах киль и стабилизатор делают чаще всего двухлонжеронными. На тяжелых самолетах киль и стабилизатор обычно моноблочной конструкции с работающей обшивкой (рис. 59).

Основные элементы силового набора (лонжероны, стенки, стрингеры, нервюры) конструктивно выполняются так же, как у крыла, и выполняют те же функции, т. е. изгиб воспринимается поясами лонжеронов, стрингерами и частично обшивкой; поперечная сила воспринимается стенками лонжеронов; кручение — замкнутым контуром; обшивка — стенки лонжеронов. Стабилизатор и киль крепятся к фюзеляжу при помощи узлов на лонжеронах и шпангоутах. Для крепления (подвески) рулей стабилизатор и киль имеют специальные кронштейны с универсальными и одноосевыми шарнирами. На рис. 60 показан типовой узел подвески руля.

Рули и элероны (рули крена).

Рули и элероны, как правило, выполняются однолонжеронными с набором стрингеров и нервюр.

Для увеличения жесткости передней части руля иногда устанавливается стенка (вспомогательный лонжерон).

В современном самолетостроении используют три характерных типа рулей для самолетов с различной скоростью полета: руль с трубчатым лонжероном, руль с жестким носком и руль с жесткой обшивкой для самолетов больших скоростей. В руле любого типа набор нервюр собирает воздушную нагрузку с поверхности руля и передает ее на лонжерон и контур кручения, а также на жесткую заднюю кромку.

В первой схеме нервюры руля всю собранную ими нагрузку передают только на лонжерон, а поскольку он трубчатый, то может успешно работать и на изгиб, и на кручение.

Во второй схеме силы с нервюр передаются на стенку балочного лонжерона, загружая его поперечным изгибом, а момент с нервюр передается на контур, образованный стенкой лонжерона с жестким носком. Этот контур и работает на кручение. В этой схеме функции распределяются следующим образом: поперечный изгиб воспринимается балочным лонжероном, а кручение — контуром силового носка.

В третьей схеме (рис. 61) подобное же распределение функций, но крутящий момент передается здесь на весь контур обшивки, а не только на носок.

В соответствии с той или иной схемой передачи сил осуществлены силовые связи элементов руля между собой. Для рулей первой схемы нервюры связаны только с лонжероном заклепками по его окружности.

Рули второй и третьей схем имеют связь нервюр со стенками лонжеронов и контуром кручения. Эта связь обеспечивается заклепками, болтами и иногда клеем.

В целях лучшего использования обшивки для восприятия изгибающего момента и сохранения формы профиля применяют рули с пенопластовым или сотовым заполнителем. Они обладают высокой жесткостью при малом весе.

(рис. 62) представляют собой вспомогательную рулевую поверхность, устанавливаемую на задней части основного руля. С помощью триммеров обеспечивается балансировка самолета относительно всех его осей при изменении центровки и режима полета. Отклонение триммера производится независимо от отклонения руля обычно при помощи специальных необратимых самотормозящихся электромеханизмов, включаемых в нужный момент пилотом двусторонним нажимным переключателем. Триммер руля высоты, как правило, управляется при помощи тросового механического устройства. Сущность работы триммера можно пояснить следующим примером. При отказе одного из двигателей самолета появляется разворачивающий момент, противодействие которому может быть создано отклонением руля поворота. Длительный полет самолета с отклоненным рулем утомителен для пилота. Отклоняя триммер в сторону, противоположную отклонению руля, нагрузку, передающуюся на ноги пилота, можно уменьшить до сколько угодно малой величины. Компенсирующий момент от триммера, противодействующий шарнирному моменту, возникает вследствие большого плеча силы, приложенной к триммеру, хотя сама сила и невелика. Величину шарнирного момента при этом можно записать в следующем виде:

где Rp и Rтр — аэродинамические силы, приложенные соответственно к рулю и триммеру; а и Ь — плечи этих сил относительно оси вращения руля.

При наличии отклоняемых стабилизатора и киля надобность в установке триммера на этих поверхностях отпадает. Триммер, состоящий из диафрагмы, лонжерона и обшивки, делается цельнометаллическим. Крепление к рулю — шарнирное.

Используемая литература: «Основы авиации» авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

Система управления стабилизатором самолета.

На самолете применен переставляемый стабилизатор, что позволяет эксплуатировать самолет с более передней центровкой на взлете и посадке при сохранении требуемых запасов углов отклонения руля высоты и без увеличения усилий на штурвале. Система управления стабилизатором изменяет угол положения стабилизатора относительно строительной горизонтали фюзеляжа (СГФ) от —1°30′ до —7°.

В процессе эксплуатации применяются два положения стабилизатора: основное полетное) —1°30′ и взлетно-посадочное — 7 °.

Система управления стабилизатором 2 (см. рис. 8.18, г) подобна рассмотренным в гл. 5 и на рис. 8.14, г и включает винтовой механизм 3 с двумя гайками, вращающимися от гидроприводов 1. Верхняя гайка связана со стабилизатором и при ее вращении и перемещении на винте 3 стабилизатор будет отклоняться. Стабили­зация самолета управляемым стабилизатором производится при нейтральном положении РВ.

Читайте также:  Втулки стабилизатора мерседес атего

В системе управления PH (см. рис. 8.18, б), состоящего из двух секций, каждая из которых управляется тремя ГУ: 1 — педали; 2 — РМ АП; 3 — винтовые механиз­мы; 4 — ЗМ; 5 — МТЭ; 7 — качалка; 8 — центрирующая пружина; 9 — механизм ограничения хода педалей с электроприводом В отличие от агрегатов, включенных в канал продольного управления, в систему управления PH включен еще демпфер рыскания 6 для улучшения боковой устойчи­вости самолета

1.Конструкция вертикального оперения самолета. Назначение и требования предъявляемые к нему. Геометрические параметры вертикального оперения.

Оперение — это несущие поверхности, являющиеся органами устойчивости и управляемости самолета. Оно состоит из горизонтального и вертикального оперения.

Конструкции стреловидного ВО обычного и Т-образного опере­ния приведены. ВО состоит из киля и PH.. Он состоит из лонжеронов и, бортовой, торцевой, силовых и обычных 29 нервюр, двух панелей 4, съемного носка 23, концевого обтекателя 27. На рис. 5.13, а соответственно обозначены: лонжероны 3 и 7, бортовая нервюра 8, корневая нервюра /, обычные нервюры 2, панели 5, 4 и 6 — носок и законцовка киля.

Конструкция силовых элементов обоих килей типовая, однако из-за дополни­тельных нагрузок на киль Т-образного оперения от ГО все его силовые элементы усилены (увеличены сечения поясов лонжеронов, стенки усилены накладками и стойками по длине лонжеронов и др.). В корневой части лонжеронов на болтах установлены штампованные из стали стыковые узлы 21 (см. рис. 5.10, г) для крепления киля к фюзеляжу .

Вертикальная аэродинамическая поверхность (поверхности) летательного аппарата, обеспечивающая его путевую устойчивость и управляемость. На большинстве самолётов В. о. располагается в плоскости симметрии на верху хвостовой части фюзеляжа. Основная, передняя, как правило неподвижная, часть В. о. (киль) обеспечивает путевуюустойчивость летательного аппарата. На задней части киля обычно помещают подвижную аэродинамическую поверхность — руль направления (РН). РН (см. Рули управления) обеспечивает путевую управляемость и балансировку летательного аппарата относительно вертикальной оси, например, при полёте с боковым ветром или с отказавшим двигателем. При переходе от дозвуковых к сверхзвуковым скоростям полёта аэродинамическая эффективность несущих поверхностей (как и эффективность органов управления) существенно снижается, в связи с чем на некоторых маневренных сверхзвуковых самолётах используют целиком поворотное В. о. (без РН).

1- форкиль; 2 — зализ; 3 — проблесковый маяк; 4—киль; 5 — руль направления; б — трим­мер руля направления; 7 — сервокомпенсатор; 8 — триммер руля высоты; 9 — руль высоты; 10 — стабилизатор; 11 —- фальшкиль

2.Проводка управления, Конструкция элементов проводки управления.

Передача управляю­щих сигналов от летчика или автоматической системы управления к элементам системы управления и, в конечном счете, к органам управления самолета произво­дится с помощью механической или электрической проводки управления.

Электрическая проводка управления представляет собой совокупность источников питания, электропроводки, коммутационных и других устройств, обеспечивающих передачу управляющих сигналов от летчика или автоматической системы управления к органам управления. Ранее такая проводка достаточно широко применялась для управления триммерами и включения электро­механизмов различных агрегатов автоматики

Механическая проводка управления представляет собой совокупность элементов, обеспечивающих дистанционную передачу сигналов от летчика или автоматической системы управления к органам управления. В систе­мах управления с гидроусилителями мощности (бустерами) участок механической проводки управления от РУ до гидроусилителя составляет ее несиловую часть с относительно небольшим уровнем нагрузок (силы трения в проводке управления и силы от загрузочного механизма), а от гидроусилителя до органа управления — силовую часть с нагрузками в десятки тысяч ньютонов. Механическая дистанцион­ная передача сигналов в системе управления может осуществляться гибкой, жес­ткой или смешанной проводкой.

Гибкая проводка обеспечивает передачу управляющих сигналов посред­ством возвратно-поступательных перемещений тросов, стальных проволок, лент или цепей. Такая проводка для отклонения органов управления вверх или вниз, влево или вправо состоит из двух ветвей ввиду того, что каждая из них может работать только на растяжение.

Жесткая проводка обеспечивает передачу управляющих сигналов посред­ством возвратно-поступательных или вращательных движений тяг.

На современных самолетах наибольшее распространение получили жесткие проводки управления с поступательным движением тяг. Тяги выполняют в виде тонкостенных дюралевых, стальных или титановых труб длиной не более двух

3.Система кондиционирования воздуха в кабине самолета. Назначение и требования, предъявляемые к системе.

Система кондиционирования самолета предназначена для обогрева (охлаждения) и вентиляции кабины экипажа и пассажирского салона, а также для поддержания в гермокабине заданного давления и состава воздуха. Кроме того, система кондиционирования обеспечивает подачу воздуха: — к стартерам при запуске двигателей; — в противообледенительную систему самолета; — на обогрев ВСУ и механизма перестановки стабилизатора; — на охлаждение оборудования; — на наддув гидробака; — и к другим потребителям. Воздух для системы кондиционирования отбирается от компрессоров двигателей, от вспомогательной силовой установки или от наземного кондиционера.

Система кондиционирования воздуха обеспечивает наддув, вентиляцию и обогрев кабин при отборе воздуха как от трех, так и от двух двигателей.

Читайте также:  Nissan almera g15 втулки стабилизатора

Воздухообмен за один час полета при работе трех двигателей — 16÷17-кратной, а при работе двух двигателей — примерно 15-кратный.

Воздухо-воздушные радиаторы 22, турбохолодильники и распределители воздуха образуют левый и правый основные узлы охлаждения.

От основных узлов охлаждения начинаются магистрали охлажденного воздуха, на которых установлены влагоотделители 28 и глушитель шума 27. После глушителя воздух разделяется на три основных потока. Первый по магистрали 12 направляется в кабину экипажа, где подводится к патрубкам обдува ног пилотов 1 и бортинженера 4, к насадкам индивидуальной вентиляции 2, к боковым патрубкам 71 с

ручными заслонками для регулирования расхода воздуха, в линию обдува остекления фонаря кабины экипажа 70 и в линию общей вентиляции и обогрева кабины экипажа, которая заканчивается ручной заслонкой 7. Второй поток поступает в коробы 56, 64 индивидуальной вентиляции пассажирских салонов, а также в воздухопроводы 57, 65 вентиляции верхней части салонов. Обратные клапаны 24 служат для перекрытия магистралей в случае разгерметизации системы, находящейся за герметической кабиной в носках крыла. Во время работы двигателей обратный клапан 43 перекрывает воздухопровод отбора воздуха 44 от ВСУ.

Воздух для системы кондиционирования отбирается от компрессоров двигателей, от вспомогательной силовой установки или от наземного кондиционера. В состав СКВ обычно входят: тепло и массообменные агрегаты (теплообменники, турбохолодильники, осушители, увлажнители и т.п.); аппаратура управления и автоматического регулирования (датчики, преобразователи, блоки управления, запорные, регулирующие краны, заслонки); система распределения воздуха (трубопроводы, короба, клапаны); аппаратура контроля СКВ и сигнализации отказов (датчики, преобразователи); вспомогательное оборудование (озонаторы, глушители, вентиляторы, поглотители, фильтры и т.д.).

Источник

Стабилизатор (воздухоплавание) — Stabilizer (aeronautics)

Самолета стабилизатор представляет собой аэродинамическая поверхность, как правило , в том числе один или несколько подвижных поверхностей управления , который обеспечивает продольное (шаг) и / или направленной (рыскания) устойчивости и управления. Стабилизатор может иметь фиксированную или регулируемую конструкцию, на которой шарнирно закреплены любые подвижные управляющие поверхности, или сам может быть полностью подвижной поверхностью, такой как стабилизатор . В зависимости от контекста «стабилизатор» может иногда описывать только переднюю часть общей поверхности.

В традиционной конфигурации самолета отдельные вертикальные (киль) и горизонтальные ( хвостовое оперение ) стабилизаторы образуют хвостовое оперение самолета. Другие конструкции оперения, такие как V-образное оперение , имеют стабилизаторы, которые способствуют сочетанию продольной и направленной стабилизации и управления.

Продольная устойчивость и управляемость могут быть достигнуты с помощью других конфигураций крыла, включая утка , тандемное крыло и бесхвостый самолет .

Некоторые типы самолетов стабилизированы электронным управлением полетом ; в этом случае неподвижные и подвижные поверхности, расположенные в любом месте самолета, могут служить в качестве активных демпферов или стабилизаторов движения.

СОДЕРЖАНИЕ

  • 1 Горизонтальные стабилизаторы
    • 1.1 Взаимодействие крыла со стабилизатором
    • 1.2 Конфигурации горизонтального стабилизатора
      • 1.2.1 Обычное хвостовое оперение
      • 1.2.2 Трехплоскостной самолет
      • 1.2.3 Самолет Canard
      • 1.2.4 Бесхвостый самолет
  • 2 вертикальных стабилизатора
    • 2.1 Бесхвостая направленная стабилизация и управление
  • 3 Комбинированные продольно-путевые стабилизаторы
  • 4 Примечания
  • 5 ссылки
  • 6 Внешние ссылки

Горизонтальные стабилизаторы

Горизонтальный стабилизатор используется для поддержания продольного баланса или дифферента самолета : он оказывает вертикальное усилие на расстоянии, поэтому сумма моментов тангажа относительно центра тяжести равна нулю. Вертикальная сила, оказываемая стабилизатором, изменяется в зависимости от условий полета, в частности, в зависимости от коэффициента подъемной силы самолета и отклонения закрылков, которые влияют на положение центра давления , а также от положения центра тяжести самолета (который меняется в зависимости от самолета. загрузка и расход топлива). Трансзвуковой полет предъявляет особые требования к горизонтальным стабилизаторам; когда местная скорость воздуха над крылом достигает скорости звука, происходит внезапное движение за центром давления .

Другая роль горизонтального стабилизатора — обеспечение продольной статической устойчивости . Устойчивость можно определить только тогда, когда автомобиль находится в балансировке; это относится к тенденции воздушного судна вернуться в сбалансированное состояние, если оно нарушено. Это поддерживает постоянное положение самолета с неизменным углом тангажа по отношению к воздушному потоку без активного участия пилота. Для обеспечения статической устойчивости самолета с обычным крылом необходимо, чтобы центр тяжести самолета находился впереди центра давления, поэтому стабилизатор, расположенный в задней части самолета, будет создавать подъемную силу в направлении вниз.

Лифта служит для управления осью основного тона; в случае полностью подвижного хвостового оперения вся сборка действует как управляющая поверхность.

Взаимодействие крыла со стабилизатором

Смыв вверх и вниз, связанный с созданием подъемной силы, является источником аэродинамического взаимодействия между крылом и стабилизатором, которое выражается в изменении эффективного угла атаки для каждой поверхности. Влияние крыла на хвост гораздо более значимо, чем противоположный эффект, и его можно смоделировать с помощью теории подъемной линии Прандтля ; однако для точной оценки взаимодействия между несколькими поверхностями требуется компьютерное моделирование или испытания в аэродинамической трубе .

Конфигурации горизонтального стабилизатора

Обычный хвостовой оперение

В традиционной конфигурации горизонтальный стабилизатор представляет собой небольшое горизонтальное оперение или хвостовое оперение, расположенное в задней части самолета. Это самая распространенная конфигурация.

На многих самолетах хвостовое оперение состоит из неподвижной поверхности, снабженной шарнирной задней поверхностью руля высоты . Триммеры могут использоваться для снятия усилия пилота; и наоборот, в некоторых случаях, например, в небольших самолетах с цельноповоротными стабилизаторами , для увеличения этих сил используются фиксаторы сервопривода .

Читайте также:  Стойка стабилизатора авео т300 оригинал

Большинство авиалайнеров и транспортных самолетов имеют большой, медленно движущийся регулируемый хвостовой оперение, которое совмещено с независимо движущимися лифтами. Руль высоты управляется пилотом или автопилотом и в первую очередь служит для изменения положения самолета, в то время как весь узел используется для дифферента (поддержания горизонтального статического равновесия) и стабилизации самолета по оси тангажа.

Многие сверхзвуковые самолеты имеют цельноповоротное оперение, также называемое стабилизатором , с регулируемой по всей поверхности.

Трехплавный самолет

Самолеты с тремя поверхностями, такие как Piaggio P.180 Avanti или Scaled Composites Triumph и Catbird , хвостовое оперение является стабилизатором, как у обычных самолетов; передняя планка, называемая форпланом или утком, обеспечивает подъемную силу и служит уравновешивающей поверхностью.

Некоторые более ранние трехплоскостные самолеты, такие как Curtiss AEA June Bug или биплан Voisin 1907 , имели обычную компоновку с дополнительной передней управляющей поверхностью по тангажу, которую называли «лифтом» или иногда «стабилизатором». Не имея рулей высоты, хвостовые части этих самолетов не имели того, что сейчас называют обычными стабилизаторами. Например, Voisin был тандемно-подъемной компоновкой (основное крыло и заднее крыло) с носовой частью, которая не была ни стабилизирующей, ни главным образом подъемной; он назывался « équilibreur » («балансир») и использовался как поверхность для регулировки по тангажу и дифферента.

Самолет Canard

В конфигурации «утка» перед основным крылом располагается небольшое крыло, или носовая часть. Некоторые авторы называют его стабилизатором или отводят только носовой части стабилизирующую роль, хотя, что касается устойчивости по тангажу , носовая часть обычно описывается как дестабилизирующая поверхность, причем основное крыло обеспечивает стабилизирующий момент по тангажу.

В самолетах с естественной неустойчивостью поверхности утка могут использоваться как активная часть системы искусственной устойчивости, и их иногда называют горизонтальными стабилизаторами.

Бесхвостый самолет

У бесхвостого самолета отсутствует отдельный горизонтальный стабилизатор. В бесхвостом самолете горизонтальная стабилизирующая поверхность является частью основного крыла. Продольная устойчивость бесхвостого самолета достигается за счет того, что самолет спроектирован таким образом, чтобы его аэродинамический центр находился позади центра тяжести. Это обычно делается путем изменения конструкции крыла, например , путем изменения угла падения в размахе крыла (направление вымывания или твист ), или с помощью отогнутого развала колес аэродинамических поверхностей.

Вертикальные стабилизаторы

Вертикальный стабилизатор обеспечивает направленную (или поворот вокруг вертикальной оси ) стабильность и обычно содержит неподвижный плавник и подвижный контроль руля направления шарнирно к его задней кромке. Реже шарнир отсутствует, а вся поверхность плавников повернута для обеспечения устойчивости и контроля.

Когда самолет встречает горизонтальный порыв ветра, устойчивость к рысканью заставляет его разворачиваться против ветра, а не в том же направлении.

Геометрия фюзеляжа, гондолы двигателей и вращающиеся винты влияют на поперечную статическую устойчивость и влияют на требуемый размер стабилизатора.

Не все самолеты имеют вертикальный стабилизатор. Вместо этого стреловидность и двугранность крыла могут обеспечить аналогичную степень путевой устойчивости, в то время как управление направлением часто осуществляется за счет увеличения сопротивления на той стороне самолета, к которой он должен быть повернут, либо в виде интерцепторов, либо в виде разделенных элеронов.

Бесхвостая направленная стабилизация и управление

Хотя использование вертикального стабилизатора является наиболее распространенным, можно получить курсовую устойчивость без дискретного вертикального стабилизатора. Это происходит, когда крыло отводится назад, и в некоторых случаях, как, например, на крыле Rogallo, часто используемом для дельтапланов , это означает, что плавник не нужен.

  • Стабилизация. Когда стреловидное крыло вращается по рысканью, стреловидность внешнего крыла уменьшается, что увеличивает сопротивление, в то время как стреловидность внутреннего крыла увеличивается, уменьшая сопротивление. Это изменение распределения сопротивления создает восстанавливающий момент.
  • Контроль. Способ контролировать рыскание — использовать дифференциальное воздушное торможение, чтобы напрямую влиять на сопротивление. Эта техника подходит для электронного управления полетом , как на летающем крыле Northrop Grumman B-2 .

Комбинированные продольно-направленные стабилизаторы

На некоторых самолетах горизонтальные и вертикальные стабилизаторы объединены в пару поверхностей, называемых V-образным хвостовым оперением . В этой конструкции два стабилизатора (киль и руль направления) установлены под углом 90–120 ° друг к другу, что дает большую горизонтальную площадь проекции, чем вертикальную, как в большинстве обычных хвостовиков. Движущиеся рулевые поверхности называются рулевыми управлениями . Таким образом, V-образное оперение действует как стабилизатор рыскания и тангажа.

Хотя может показаться, что конфигурация V-образного хвоста может привести к значительному уменьшению смачиваемой области хвоста , она страдает от увеличения сложности управления и срабатывания, а также из-за сложного и вредного аэродинамического взаимодействия между двумя поверхностями. Это часто приводит к увеличению общей площади, что снижает или сводит на нет первоначальную выгоду. Бичкрафт Бонанза самолета свет был первоначально разработан с V-образным хвостовым оперением.

Существуют и другие комбинированные макеты. MQ-1 Общий Atomics Хищник беспилотный летательный аппарат имеет перевернутую V-хвост . Поверхности хвостового оперения Lockheed XFV можно описать как V-образное оперение с поверхностями, проходящими через фюзеляж на противоположную сторону. У ЛирАвиа Лир Фанат был Y- образный хвост . Все спаренные оперения с двугранным углом оперения обеспечат сочетание продольной и направленной стабилизации.

Источник