Виды усилителей мощности с генератором



Виды усилителей мощности с генератором

Усилитель мощности низкой частоты для генератора сигналов Г3-118

Усилители мощности низкой частоты (УНЧ) в разных вариантах были разработаны для повышения нагрузочной способности генератора сигналов низкочастотного Г3-118 и использовались при проведении опытов с магнитострикционными преобразователями различных типов, динамическими головками, низкочастотными и высокочастотными излучателями звука, соленоидами, трансформаторами и т. п. Помимо генератора Г3-118 совместно с усилителями могут использоваться и другие источники сигнала с подходящими параметрами.

1. Низкочастотный усилитель мощности 15 Вт

Параметры усилителя:

  • диапазон рабочих частот 20 Гц . 120 кГц при неравномерности АЧХ не более 10 %
  • максимальная выходная мощность 15 Вт на нагрузке сопротивлением 4 Ом при входном напряжении 0.7 В эфф. (1 В ампл.)
  • коэффициент гармоник при максимальной выходной мощности в диапазоне рабочих частот не более 1 %
  • входное сопротивление не менее 4.7 кОм
  • питание: сеть переменного тока напряжением 220 В частотой 50 Гц
  • размеры 200 х 230 х 110 мм 3
  • масса не более 2 кг

Схема электрическая принципиальная усилителя мощности 15 Вт

Электрическая принципиальная схема усилителя мощности показана на рис. 1.

Рис. 1. Схема электрическая принципиальная низкочастотного усилителя мощности 15 Вт.

За основу усилителя взята схема простого высококачественного усилителя мощности звуковой частоты [2] с некоторыми корректировками. Операционный усилитель (ОУ) DA1 (КР544УД2) работает в малосигнальном режиме с малоомной нагрузкой R9. ОУ питается через резисторы R7, R8. Ток питания, зависящий от входного сигнала, создает на этих резисторах напряжение смещения транзисторов VT1, VT3 и VT2, VT4, включенных по схеме Дарлингтона. С выхода усилителя (коллекторы VT3, VT4) сигнал отрицательной обратной связи через резисторы R5, R6 поступает на инвертирующий вход ОУ. Соотношение сопротивлений R5 и R6 определяет уровень входного сигнала при максимальной мощности (0.7 В эфф.). Для балансировки ОУ по постоянному напряжению служит цепь R2R3R4. Конденсатор C2 служит фильтром нижних частот, а цепочка C4R9 — фильтром верхних частот. Для питания усилителя используется трансформатор T1 с выходным напряжением 24 В (действующее значение), ко вторичной обмотке которого подключен диодный мост VD1 — VD4 (4 шт. Д242). Конденсаторы C8, C9 фильтра блока питания создают искусственную среднюю точку, используемую в качестве общего провода. Для индикации работы усилителя используется светодиод HL 1 «СЕТЬ». Ниже на фотографиях рис. 2 — 4 показан вид усилителя спереди, сзади и со снятой верхней крышкой.

Рис. 2. Низкочастотный усилитель мощности 15 Вт. Вид спереди.

Рис. 3. Низкочастотный усилитель мощности 15 Вт. Вид сзади.

Рис. 4. Низкочастотный усилитель мощности 15 Вт. Вид сверху со снятой верхней крышкой.

2. Низкочастотный усилитель мощности 100 Вт

Параметры усилителя:

  • диапазон рабочих частот 10 Гц . 50 кГц при неравномерности АЧХ 0 Дб (0 %), 5 Гц . 100 кГц при неравномерности АЧХ не более 1.5 Дб (15 %), 2 Гц . 150 кГц при неравномерности АЧХ не более 6 Дб (50 %)
  • максимальная выходная мощность 100 Вт
  • нагрузка активно-индуктивная, сопротивление нагрузки лимитируется выходной мощностью, оптимальное сопротивление нагрузки 4 . 8 Ом
  • максимальное входное напряжение при коэффициенте усиления 100 % 0.7 В эфф. (1 В ампл.)
  • максимальная амплитуда выходного напряжения усилителя без нагрузки 40 В (28 В эфф.)
  • коэффициент гармоник при выходной мощности 50 Вт в диапазоне частот 5 Гц . 100 кГц не более 1 %
  • входное сопротивление не менее 10 кОм
  • питание: сеть переменного тока напряжением 220 В частотой 50 Гц
  • размеры 200 х 230 х 110 мм 3
  • масса не более 4.5 кг

Схемы электрические принципиальные усилителя мощности 100 Вт

Электрические принципиальные схемы усилителя мощности показаны на рис. 5, 6.

Рис. 5. Схема электрическая принципиальная низкочастотного усилителя мощности 100 Вт.

Для питания усилителя от сети переменного тока 220 В 50 Гц используется силовой понижающий трансформатор T1 с выходным напряжением 2 х 32 В (действующее значение), ко вторичной обмотке которого подключен диодный мост VD1 — VD4 (4 шт. КД202В). Конденсаторы C1, C2, включенные на выходе диодного моста, выполняют роль фильтра блока питания. Для индикации работы усилителя используется светодиод HL 1 «СЕТЬ» (эскиз печатной платы приведен на рис. 7). С помощью потенциометра R1 » УСИЛЕНИЕ » можно линейно изменять уровень входного сигнала от 0 до 100 %.

Рис. 6. Схема электрическая принципиальная платы низкочастотного усилителя мощности 100 Вт.

Сам усилитель мощности построен по типовой схеме на микросхеме УНЧ TDA7294 (рис. 6). Чтобы расширить частотный диапазон в сторону более низких частот, использованы конденсаторы с емкостью больше рекомендованной ( C1, C2, C9 ). Эскиз печатной платы усилителя мощности представлен на рис. 8.

Рис. 7. Эскиз печатной платы индикатора усилителя мощности 100 Вт (размер платы 30 х 30 мм 2 ).

Рис. 8. Эскиз печатной платы низкочастотного усилителя мощности 100 Вт (размер платы 120 х 80 мм 2 ).

Ниже на фотографиях рис. 9 — 11 показан вид усилителя спереди, сзади и со снятой верхней крышкой:

Рис. 9. Низкочастотный усилитель мощности 100 Вт. Вид спереди.

Рис. 10. Низкочастотный усилитель мощности 100 Вт. Вид сзади.

Рис. 11. Низкочастотный усилитель мощности 100 Вт. Вид сверху со снятой верхней крышкой.

3. Низкочастотный двухканальный усилитель мощности 2 х 100 Вт

Параметры усилителя:

  • число каналов — два, характеристики каналов идентичные, источник входного сигнала каждого из каналов может быть выбран независимым переключателем
  • диапазон рабочих частот 10 Гц . 50 кГц при неравномерности АЧХ 0 Дб (0 %), 5 Гц . 100 кГц при неравномерности АЧХ не более 1.5 Дб (15 %), 2 Гц . 150 кГц при неравномерности АЧХ не более 6 Дб (50 %)
  • максимальная выходная мощность 100 Вт на канал
  • нагрузка активно-индуктивная, сопротивление нагрузки лимитируется выходной мощностью, оптимальное сопротивление нагрузки 4 . 8 Ом
  • максимальное входное напряжение при коэффициенте усиления 100 % 0.7 В эфф. (1 В ампл.)
  • максимальная амплитуда выходного напряжения каждого из каналов усилителя без нагрузки 40 В (28 В эфф.)
  • коэффициент гармоник при выходной мощности 50 Вт в диапазоне частот 5 Гц . 100 кГц не более 1 %
  • входное сопротивление не менее 10 кОм
  • питание: сеть переменного тока напряжением 220 В частотой 50 Гц
  • размеры 400 х 360 х 160 мм 3 (без учета органов управления и подключения)
  • масса не более 17 кг

Схемы электрические принципиальные усилителя мощности 2 х 100 Вт

Электрические принципиальные схемы усилителя мощности показаны на рис. 12 — 14.

Рис. 12. Схема электрическая принципиальная двухканального низкочастотного усилителя мощности 2 х 100 Вт.

Напряжение питающей сети 220 В 50 Гц с разъема XP1 через предохранитель FU1 и выключатель S 1 поступает на первичную обмотку понижающего трансформатора T1 . Его вторичная обмотка с выходным напряжением 2 х 32 В (действующее значение) используется для питания силовой части усилителя (через силовой выпрямитель), а обмотка с выходным напряжением 2 х 16 В — для питания сигнальных цепей (через стабилизатор напряжения). Напряжение с обмотки 2 х 32 В поступает на диодный мост VD1 — VD4 ( 4 шт. Д215А) силового выпрямителя. Конденсаторы C1 — C4, включенные на выходе диодного моста силового выпрямителя, выполняют роль фильтра блока питания. Для индикации работы усилителя используется светодиод HL 1 «СЕТЬ» (эскиз печатной платы на рис. 15). Двухполярный стабилизатор напряжения +15 В собран по схеме линейного параметрического стабилизатора на микросхеме DA1 ( КР142ЕН5) и транзисторе VT1 (КТ814). Он служит для питания сигнальных цепей усилителя, в частности, входного инвертора, а также вентилятора принудительного охлаждения радиаторов усилителей мощности. Эскиз печатной платы стабилизатора напряжения показан на рис. 16. С помощью потенциометров R1 » КАНАЛ A . УСИЛЕНИЕ , % » и R 2 » КАНАЛ B . УСИЛЕНИЕ , % » можно линейно изменять уровень входного сигнала с каждого из канальных входов от 0 до 100 % независимо друг от друга. С потенциометров R1 , R2 сигнал поступает на входной инвертор, позволяющий получать неинвертированное и инвертированное напряжение с каждого из канальных входов с примерно одинаковой амплитудой. Переключатели S2 » КАНАЛ A . ИСТОЧНИК » и S 3 » КАНАЛ B . ИСТОЧНИК » позволяют выбрать для каждого из каналов входной источник сигнала и его полярность. Далее сигналы выбранных источников поступают на соответствующие усилители мощности канала A и B . С выходов усилителей мощности усиленный сигнал поступает на выходные клеммы усилителя. Выходные клеммы усилителя при необходимости могут быть соединены параллельно для повышения тока в нагрузке (переключатели S 2 и S3 должны находиться в одинаковых положениях) или использоваться в последовательном соединении для повышения напряжения на нагрузке (переключатели S2 и S3 должны находиться в положении источника сигнала с одного и того же входа, но в разной полярности, например, A и -A или B и -B ).

Рис. 13. Схема электрическая принципиальная платы усилителя мощности одного канала низкочастотного усилителя мощности 2 х 100 Вт.

Усилители мощности обоих каналов построены по типовой схеме на микросхеме УНЧ TDA7294 (рис. 13). Чтобы расширить частотный диапазон в сторону более низких частот, использованы конденсаторы с емкостью больше рекомендованной ( C1, C2, C9 ). Эскиз печатной платы усилителя мощности каждого из каналов представлен на рис. 17. Для принудительного охлаждения плат усилителей мощности используется вентилятор, установленный в корпусе усилителя и подключенный к стабилизатору напряжения.

Рис. 14. Схема электрическая принципиальная платы входного инвертора низкочастотного усилителя мощности 2 х 100 Вт.

Двухканальный входной инвертор (рис. 14) построен по схеме инвертирующего усилителя с коэффициентом усиления, равным 1, на быстродействующих операционных усилителях DA1DA2 (КР574УД1). Точное значение коэффициента усиления подбирается с помощью подстроечных резисторов R4 или R9 независимо для каждого канала инвертора. Эскиз печатной платы входного инвертора представлен на рис. 18.

Рис. 15. Эскиз печатной платы индикатора усилителя мощности 2 х 100 Вт (размер платы 30 х 30 мм 2 ).

Рис. 16. Эскиз печатной платы стабилизатора напряжения +15 В усилителя мощности 2 х 100 Вт (размер платы 90 х 60 мм 2 ).

Рис. 17. Эскиз печатной платы одного канала низкочастотного усилителя мощности 2 х 100 Вт (размер платы 120 х 80 мм 2 ).

Рис. 18. Эскиз печатной платы входного инвертора низкочастотного усилителя мощности 2 х 100 Вт (размер платы 70 х 45 мм 2 ).

Ниже на фотографиях рис. 19 — 21 показан вид усилителя спереди, сзади и со снятой верхней крышкой:

Рис. 19. Низкочастотный двухканальный усилитель мощности 2 х 100 Вт. Вид спереди.

Рис. 20. Низкочастотный двухканальный усилитель мощности 2 х 100 Вт. Вид сзади.

Рис. 21. Низкочастотный двухканальный усилитель мощности 2 х 100 Вт. Вид сверху со снятой верхней крышкой.

4. Состояние разработки

Усилители мощности изготовлены в одном экземпляре каждый и используются в лабораторных условиях для проведения различных экспериментов. В частности, с помощью усилителя в комплекте с генератором сигнала и осциллографом можно оценивать свойства различных магнитомягких материалов в широком диапазоне частот. Одна из измерительных схем показана на рис. 22.

Рис. 22. Измерительная схема для снятия петель гистерезиса магнитных материалов.

На испытуемый образец наматываются две обмотки. L1 — обмотка возбуждения, с ее помощью внутри образца создается переменное магнитное поле. Обмотка L2 — сигнальная. Напряжение с ее выхода, прямо пропорциональное скорости изменения магнитной индукции внутри образца, подается на интегратор, а с него — на вход Y осциллографа. Резистор R1 выполняет роль датчика тока. Напряжение с него, прямо пропорциональное напряженности магнитного поля внутри образца, подается на вход X осциллографа. Роль интегратора в самом простом исполнении может выполнять RC цепь, включенная по схеме фильтра нижних частот (ФНЧ). Выбор частоты среза ФНЧ определяется частотой измерений.

На рис. 23 показан пример петли гистерезиса для ферритового кольца марки М1500НМ3-Б типоразмера К20х10х5, снятой на частоте 500 Гц для определения коэрцитивной силы. Одно большое деление по горизонтали составляет примерно 27 А/м. Коэрцитивная сила по индукции равна примерно 11 А/м, что соответствует литературным данным [ 3 , 4 ] .

Рис. 23. Петля гистерезиса ферритового кольца марки М1500НМ3-Б типоразмера К20х10х5 на частоте 500 Гц.

С использованием УНЧ 100 Вт проводились эксперименты по изучению воздействия на различные биообъекты и биоматериалы магнитного поля катушек Гельмгольца [ 5 ] , промодулированного музыкальными, шумовыми и кодированными сигналами, которые подавались на вход усилителя с выхода звуковой карты компьютера. Схема эксперимента представлена на рис. 24. Усилитель мощности подключается к стереовыходу звуковой карты компьютера через резисторную цепь R1R2 , выполняющую роль сумматора сигналов левого и правого звукового канала, а катушки Гельмгольца — к выходу усилителя. Для звуковой индикации переменного магнитного поля в зоне объекта может использоваться специальный аудиоконтроллер [1] .

Рис. 24. Схема эксперимента по изучению воздействия магнитного поля на биообъекты и биоматериалы.

Ссылки:

  1. Аудиоконтроллер переменного магнитного поля звуковой частоты
  2. Гумеля Е. Простой высококачественный УМЗЧ. — Радио, 1989, № 1, с. 44 — 48.
  3. Мишин Д. Д. Магнитные материалы: Учеб. пособие. — М.: Высш. школа, 1981 — 335 с., ил.
  4. Преображенский А. А., Бишард Е. Г. Магнитные материалы и элементы: Учебник для студ. вузов по спец. «Полупроводники и диэлектрики». — 3-е изд., перераб. и доп. — М.: Высш. шк., 1986. — 352 с.: ил.
  5. Системы колец Гельмгольца (катушки Гельмгольца)
  • Катушки Гельмгольца — система из двух одинаковых последовательно включенных цилиндрических соленоидов, расположенных соосно, причем расстояние между центрами соленоидов приблизительно равно их среднему радиусу. В центре системы имеется зона однородного магнитного поля.
  • Коэрцитивная сила по магнитной индукции — напряженность размагничивающего поля, которое должно быть приложено к предварительно намагниченному образцу, чтобы магнитная индукция в нем стала равна нулю.
  • Усилитель мощности — устройство, выходной сигнал которого повторяет по форме и превосходит по мощности сигнал на входе.

23.09.2003
17.06.2010
26.04.2013
13.11.2013

Источник

ЭЛЕКТРОННЫЕ УСИЛИТЕЛИ И ГЕНЕРАТОРЫ

Электронные усилители

Транзисторные усилители

Назначением усилителя как электронного устройства является увеличе­ние мощности сигнала за счет энергии источника питания.

В зависимости от формы электрических сигналов усилители разделяют на: усили­тели непрерывных сигналов, называемые усилителями постоянного тока; усили­тели сигналов с гармоническим несущим процессом, которые называют усилите­лями переменного тока; усилители импульсных сигналов – импульсные усили­тели. Из усилителей переменного тока выделяют узкополосные, или из­бирательные, усиливающие только одну гармоническую составляющую из ряда гармоник несинусоидального периодического тока. Импульсные усилители являются широкополосными.

В электронных устройствах применяют также усилители, преобразую­щие изменения амплитуды или фазы гармонического тока в соответствующие изменения значения и знака постоянного тока (напряжения). Называют их усилителями среднего значения тока.

В соответствии с назначением коэффициентом преобразования усилителя является коэффициент усиления мощности

где , – мощность выходного и входного сигналов соответственно.

Однако в зависимости от режимов работы выходной и входной цепей усилителя практическое значение может иметь не усиление мощности сигнала, а повышение его уровня по напряжению или по току. Поэтому на практике различают усилители мощности, усилители напряжения и усилители тока. Со­ответственно в качестве коэффициентов преобразования используются коэф­фициенты усиления напряжения и тока

Режим работы усилителя определяется соотношениями входного , выход­ного сопротивлений и сопротивлений источника сигнала и на­грузки . Для усилителя напряжения характерны соотношения: , , которые дают режим, близкий к режиму холостого хода на выходе. Источником сигнала является источник напряжения. Для усилителя тока соотно­шения , дают режим, близкий к короткому замыканию на выходе. Источником сигнала служит источник тока.

Однако рассмотренные идеальные режимы усиления напряжения или тока на практике встречаются редко. Транзисторные усилители большей частью рабо­тают как усилители мощности в режиме согласованной нагрузки источника сиг­нала, а иногда и согласованной нагрузки усилителя, т.е. при и .

Простейший усилитель принято называть усилительным каскадом. При не­достаточном усилении сигнала одним каскадом усилитель выполняется из не­скольких каскадов. Усилители электронных устройств, как правило, состоят из двух или трех каскадов, которые называются входным, выходным и промежуточ­ным каскадами.

Общим требованием к усилителям электронных устройств является как можно меньшее искажающее воздействие на сигналы. Необходимые информаци­онные характеристики и параметры усилителей обеспечиваются при достаточно высокой стабильности коэффициентов усиления, практически линейной проход­ной характеристике, ограниченных линейных искажениях (сдвигах фаз гармони­ческих составляющих сигналов) и малой инерционностью. Перечисленные свой­ства усилителей достигаются главным образом за счет обратных связей. Поэтому практически все усилители электронных устройств выполняются с обратными связями. Особое место занимают усилители с глубокой положительной, обеспе­чивающей релейный или автоколебательный режим их работы, и отрицательной обратной связью – операционные усилители.

Усилительный каскад может быть выполнен на основе любой из трех схем включения транзистора. Однако преимущественно используются усилительные каскады по схеме включения с общим эмиттером (ОЭ) биполярного и схеме с общим истоком (ОИ) полевого транзисторов, как обеспечивающие наибольшее усиление (рис. 14.1 а, б).

Режим работы транзистора в усилительном каскаде отличается от режима работы в схеме включения транзистора, так как его выходные зажимы размы­каются и к ним под­ключается нагрузка с сопротивле­нием , а к входным зажимам под­ключается источник сигнала с сопро­тивлением и ЭДС . При = 0 транзистор находится в некотором исходном режиме, задаваемом ис­точником питания и источником смещения .

Резистор уменьшает коэф­фициент усиления по току биполяр­ного транзистора и крутизну харак­теристики полевого транзистора, поскольку их выходные сопротивле­ния конечны.

Внутренняя положительная обратная связь в схеме включения биполяр­ного транзистора с ОЭ, увеличивая коэффициент усиления мощности каскадом, одновременно увеличивает нестабильность коэффициента усиле­ния. Поэтому усилительные каскады на основе схемы с ОЭ биполярного и с ОИ полевого транзисторов всегда выпол­няются с внешними (специально введенными) отрицательными обратными связями (рис. 14.2 а, б).

В усилителях переменного тока частота несущего процесса, как правило, равна промышленной (50 Гц) или кратна ей. Наи­большие частоты не выходят за пределы звукового диапазона, наименьшая может составлять 25…30 Гц.

В усилителях переменного тока возможно гальваническое разделение це­пей усиливаемого сигнала и цепей постоянного тока, задающих исходный ре­жим транзистора, что является важной их особенностью. Разделение достига­ется путем использования реактивных сопротив­лений – кондесаторов или трансформаторов для связи транзистора с источником сигнала и нагрузкой. Соответственно различают усилители переменного тока с конден­саторными (RC-связями) и трансформаторными связями.

Достоинствами конденсаторных усилительных каскадов являются их от­носительная простота и технологичность изготовления. Однако их параметры, прежде всего коэффициент усиления мощности, хуже параметров трансформаторных каскадов. Достоинством последних является свойство обеспечения возможно большего приближения к оптимальному ре­жиму усиления мощности вплоть до согласования транзи­стора с источником сигнала и нагрузкой. Однако в связи с низкими значениями напряжений, применяемых для питания транзисторов, согласование возможно только в усилителях слабых сигналов. Такие усилители выполняют, как правило, с конденсаторными связями. С трансформаторными связями выпол­няют усилители больших сигналов, особенно выходные каскады (на биполярных транзисторах).

Часто, особенно в электронных устройствах с преобразователями неэлек­трических величин, необходимо усиление сигналов очень низких частот ( ). В этом случае используют усилительные каскады постоянного тока, имеющие амплитудно-частотную характеристику, равномерную в диа­пазоне от до . Так как использование конденсаторов и трансформато­ров в усилителях постоянного тока невозможно, для связи между каскадами используют только резисторы.

Из числа схем усилителей постоянного тока наибольший интерес представ­ляет параллельно-баланс–ная или дифференциальная схема (рис. 14.3). В ней использован принцип четырехплече­го моста. Однако в такой схеме предъявляются особые требования к идентичности характеристик транзи­сторов и других элементов. Такие усилители могут выполняться как на биполярных, так и на полевых тран­зисторах. В дискретных устройствах (например, ЭВМ) их используют для выполнения арифметических опера­ций.

14.1.2. Усилители на микро­схемах

В настоящее время многокаскадные усилители переменного тока с RC-свя­зью выполняют на основе интегральных микросхем. Они состоят, как правило, из нескольких (не менее двух) каскадов. Полоса пропускания частот таких усилите­лей находится в пределах от 200 Гц до 100 кГц. Особенностью интегральных усилителей являются непосредственные (гальванические) связи между каскадами. Связь с источником сигнала и нагрузкой конденсаторная. Так как конденсаторы большой емкости трудно выполнить в интегральном исполнении, то в микросхе­мах предусматривают специальные выводы для подключения внешних конденса­торов и резисторов. На рис. 14.4 показаны схема интегрального усилителя (обве–­ дена пунктиром) и схема его включения.

При выведенных отрицательных обратных связях коэффициент усиления напряжения в зависимости от модификации усилителей составляет 250…800. При входном сопротивлении = 1,5 кОм и сопротивлении на­грузки = 5 кОм коэффициент усиления мощности может составлять (2…20)·10 4 . Такое усиление позволяет за счет сильных общих отрица­тельных обратных связей обеспечить высокую стабильность коэффициента усиления мощности. При этом наибольшая выходная мощность может достигать 1 мВт.

Усилитель на рис. 14.4 трехкаскадный, причем третий каскад выполнен на основе включения транзисторов Т3 и Т4 по схеме составного транзистора, поэтому в нем возможны общие отрицательные обратные связи.

Операционные усилители

С развитием интегральной технологии производства наиболее распро­страненным элементом для построения электронных устройств стал операционный усилитель. Он представляет собой высококачест­венный усилитель постоянного тока с дифференциальным входом, обладаю­щий высоким коэффициентом усиления, большим входным и малым выходным сопротивлениями.

На принципиальных схемах в самом общем виде опера­ционный усилитель обычно изображают в виде прямоуголь­ника с двумя входными и одним выходным выводами (рис. 14.5). Один из входов усилителя, напряжение на кото­ром усиливается с тем же знаком, называется неинверти­рующим и обозначается «+». Напряжение на другом входе – инвертирующем («–») – усиливается с изменением знака на обратный. Коэффициент усиления в схеме с разомк­нутой обратной связью одинаков для обоих входов операционного усилителя, причем во всем рабочем температурном диапазоне. Этого достигают выполнением всех элементов усилителя, в том числе и входных транзисторов, на одной кремниевой пластине.

Основные параметры схем, выполняемых на операционном усилителе (ОУ), удобно рассматривать, считая его идеальным, с параметрами:

1) коэффициент усиления в схеме с разомкнутой обратной связью бес­конечно большой;

2) напряжение на выходе равно нулю при нулевой разности входных на­пряжений;

3) входное сопротивление бесконечно большое;

4) выходное сопротивление равно нулю;

5) полоса пропускания частот бесконечна (усилитель не вносит за­держки).

Схема операционного усилителя, изображенная на рис. 14.6 называется инвертирующей схемой ОУ. Харак­терной особенностью ее является то, что неинвертирующий вход заземлен, а инвертирующий вход связан с выхо­дом через сопротивление обратной связи Для инвертирующего включения ОУ характерны перемена знака вход­ного сигнала, а также зависимость коэффициента усиления (коэффициента пере­дачи) только от параметров цепи обратной связи. При достаточно большом значе­нии коэффициента усиления, даже в случае его изменения от экземпляра к экзем­пляру ОУ или от температуры, параметры усилителя практически не меняются. Такая схема, называемая инвертирующим повторителем входного сигнала, ис­пользуется как промежуточное звено при связи источника сигнала, имеющего относительно большое внутреннее сопротивление (но меньшее, чем входное со­противление ОУ), с низкоомным приемником.

Определим с учетом знака выходного напряжения значение входного тока

Из этого следует, что напряжение на инвертирующем входе для данной схемы стремится к нулю. Поэтому здесь инвертирующий вход может рассматри­ваться как точка «кажущейся» земли.

На основе инверти­рующего усилителя выполняю­т сумматоры, у которых с инверти­рующим входом связано не­сколько источников сигналов со своими входными сопро­тивлениями (рис. 14.7).

Поскольку инверти­рующий вход, называемый в данном случае «суммирую­щей точкой», сохраняет потенциал земли, входные токи каждого из источников не зависят друг от друга. Через элемент обратной связи протекает сумма этих токов.

При малом переменном напряжении входного сигнала, соизмеримом с падением напряжения на открытом диоде, для его выпрямления могут приме­няться схемы на основе ОУ. В них практически исключается влияние падения напряжения на диоде. На рис. 14.8 представлена схема однополупериодного выпрямителя, где диод VD1 включен в цепь обратной связи.

Для схемы, показанной на рис. 14.9 а с учетом того, что потенциал точки суммирования токов за счет обратной связи совпадает с потенциалом земли, имеют место следующие зависимости

Таким образом, посредством этой схемы осуществляется интегри­рование входного сигнала с изменением знака. Такой интегратор может применяться, для сглаживания выпрямленного напряжения. Напри­мер, подключив в схеме (рис. 14.8) параллельно резистору конденсатор, получим выпрямитель.

Схему дифференциатора, выполняющего операцию, обратную интегри­рованию, т.е. дифференцирование, можно получить из предыдущей схемы, поменяв местами конденсатор и резистор (рис. 14.9 б). Для этой схемы харак­терны следующие

В схеме неинвертирующего уси­лителя (рис. 14.10) источник входного сигнала с внутренним сопротивлением связан с неинвертирующим входом, а инвертирующий заземлен через рези­стор и имеет обратную связь через резистор .

Этот усилитель в определенном масштабе воспроизводит на выходе входное напряжение. Достоин­ством его является большое входное и малое внутреннее выходное сопротив­ления. При = 0 усилитель превращается в повторитель входного напряжения.

Для сравнения двух сигналов используют схемы ОУ в режиме компа­ратора. В этих схемах для получения максимальной точности, определяемой чувствительностью схемы, петля обратной связи обычно не замыкается.

На рис. 14.11 показан компаратор, применяемый для сравне­ния разнополярных входных сигналов – сигнала и опорного . Если одно напряжение

превы­шает другое, то выходная часть ОУ за счет большого коэффициента усиления переходит из одного состояния насыщения в другое. Таким образом, компаратор служит для преобразования разности аналоговых входных сигналов в дискретный вы­ходной.

Реальный ОУ отличается от рассмотренного ранее идеального наличием входных токов и выходного сопротивления, несбалансированностью обоих плеч входного дифференциального усилителя и конечным значением коэффи­циента усиления . Поэтому выбор параметров элементов внешних связей ОУ с другими узлами схемы связан с его электрическими параметрами. Для этого в справочной литературе приводится около 20 параметров.

Электронные генераторы

Электронным генератором называют устройство, создающее электриче­ские колебания определенной частоты и формы и использующее для этого энергию источника постоянного тока (напряжения).

По принципу действия генераторы бывают с внешним[2] и внутренним воз­буждением. Генераторы с внутренним возбуждением (автогенераторы) возбуж­даются самостоятельно (без внешнего источника). Основными характеристи­ками генераторов являются форма, частота и амплитуда создаваемых колеба­ний.

По форме колебаний генераторы подразделяются на генераторы синусои­дальных колебаний и генераторы несинусоидальных (релаксационных) колеба­ний.

По частоте колебаний генераторы подразделяются на низкочастотные (от долей герц до 100 кГц), высокочастотные (100 кГц … 10 мГц) и сверхвысоко­частотные (более 10 мГц).

Важными характеристиками являются мощность выходного сиг­нала, стабильность частоты и коэффициент полезного действия.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник

Поделиться с друзьями
Мощность и напряжение