Меню

Виды сил формулы давление работа мощность



Работа, мощность, КПД

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

\[ \large \boxed < A = \left| \vec\right| \cdot \left| \vec \right| \cdot cos(\alpha) >\]

\( F \left( H \right) \) – сила, перемещающая тело;

\( S \left( \text <м>\right) \) – перемещение тела под действием силы;

\( \alpha \) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом \(A\) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

\( E_ \left(\text <Дж>\right) \) – начальная кинетическая энергия машины;

\( E_ \left(\text <Дж>\right) \) – конечная кинетическая энергия машины;

\( m \left( \text<кг>\right) \) – масса автомобиля;

\( \displaystyle v \left( \frac<\text<м>>\right) \) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

\[ \large E_ = 1000 \cdot \frac<1^<2>> <2>= 500 \left(\text <Дж>\right) \]

\[ \large E_ = 1000 \cdot \frac<10^<2>> <2>= 50000 \left(\text <Дж>\right) \]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

Читайте также:  N насосов различной мощности наполняют бассейн водой

\[ \large \Delta E_ = E_ — E_ \]

\[ \large \Delta E_ = 50000 – 500 = 49500 \left(\text <Дж>\right) \]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

\( E_ \left(\text <Дж>\right) \) – начальная потенциальная энергия яблока;

\( E_ \left(\text <Дж>\right) \) – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

\[ \large E_

= m \cdot g \cdot h\]

\( m \left( \text<кг>\right) \) – масса яблока;

\( h \left( \text<м>\right) \) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

\[ \large E_ = 0,2 \cdot 10 \cdot 3 = 6 \left(\text <Дж>\right) \]

Потенциальная энергия яблока на столе

\[ \large E_ = 0,2 \cdot 10 \cdot 1 = 2 \left(\text <Дж>\right) \]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

\[ \large \Delta E_

= E_ — E_ \]

\[ \large \Delta E_

= 2 – 6 = — 4 \left(\text <Дж>\right) \]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_

\) дополнительно допишем знак «минус».

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы \(\displaystyle F_<\text<тяж>>\) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы \(\displaystyle F_<\text<тяж>>\) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ \(\vec\) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

\[ \large A = \Delta E_ \]

\[ \large A = \Delta E_

\]

\[ \large A = F \cdot S \cdot cos(\alpha) \]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

\[ \large P = \left( \vec , \vec \right) \]

Формулу можно записать в скалярном виде:

\[ \large P = \left| \vec \right| \cdot \left| \vec \right| \cdot cos(\alpha) \]

\( F \left( H \right) \) – сила, перемещающая тело;

\( \displaystyle v \left( \frac<\text<м>> \right) \) – скорость тела;

\( \alpha \) – угол между вектором силы и вектором скорости тела;

Когда векторы \(\vec\) и \(\vec\) параллельны, запись формулы упрощается:

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД – коэффициент полезного действия. Обычно обозначают греческим символом \(\eta\) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент \(\eta\) для какого-либо устройства, механизма или процесса.

\( \large A_<\text<полезная>> \left(\text <Дж>\right)\) – полезная работа;

\(\large A_<\text<вся>> \left(\text <Дж>\right)\) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

Величина \(\eta\) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

Источник

Шпаргалка по физике для 7 класса (формулы)

Нахождение скорости тела при равномерном движении:

_________________________

Нахождение плотности вещества:

_________________________

Нахождение модуля силы упругости при растяжении или сжатии (закон Гука), справедлив только для упругой деформации:

Сила тяжести:

________________________

(если тело и опора неподвижны или движутся прямолинейно и равномерно; сила тяжести приложена к телу, а вес к опоре или подвесу).

__________________________

Равнодействующая двух сил (модуль):

Если силы направлены по одной прямой в одну и ту же сторону.

Если силы направлены по одной прямой в противоположные стороны.

__________________________

__________________________

Давление жидкости на дно и стенки сосуда:

Давление внутри жидкости на одной и той же глубине одинаково по всем направлениям.

___________________________

Гидравлический пресс:

Действие жидкости и газа на погруженное в них тело (выталкивающая сила):

__________________________

Архимедова сила:

Механическая работа:

Механическая работа прямо пропорциональна приложенной силе и прямо пропорциональна пройденному пути.

Если направление силы, действующей на тело, перпендикулярно направлению движения, то эта сила работы не совершает, работа равна нулю:

_________________________

Мощность равна отношению работы ко времени, за которое она была совершена.

_________________________

Правило равновесия рычага:

Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.

Момент силы:

Произведение модуля силы, вращающей тело, на ее плечо называется моментом силы.

____________________________

Равенство работ при использовании простых механизмов («Золотое правило» механики):

Действуя на длинное плечо рычага, мы выигрываем в силе, но при этом во столько же раз проигрываем в пути.

_____________________________

____________________________

Потенциальная и кинетическая энергия:

потенциальная энергия – энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела (энергия взаимодействия)

кинетическая энергия – энергия, которой обладает тело вследствие своего движения (энергия движения)

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Номер материала: ДБ-240323

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник