Меню

Цикл напряжений по французски



Цикл напряжений

1 цикл напряжений

2 цикл напряжений

3 цикл напряжений

4 цикл напряжений

5 цикл напряжений

6 цикл напряжений

7 цикл напряжений

8 цикл напряжений

9 цикл напряжений

10 цикл напряжений

11 цикл напряжений

12 цикл напряжений

13 цикл напряжений

14 цикл напряжений

15 цикл напряжений

16 цикл напряжений

17 цикл напряжений

18 цикл напряжений

19 цикл напряжений

20 цикл напряжений

[lang name=»Russian»]напряжение, вызывающее пластическую деформацию — flow stress

См. также в других словарях:

Цикл напряжений — Совокупность последовательных значений напряжений за один период их изменения при регулярном нагружении Источник: СТО Газпром 2 3.5 252 2008: Методика продления срока безопасной эксплуатации магистральных газопроводов … Словарь-справочник терминов нормативно-технической документации

цикл напряжений — Совокупность изменений за один полный период при установившемся режиме нагружения. [http://sl3d.ru/o slovare.html] Тематики машиностроение в целом … Справочник технического переводчика

цикл напряжений — įtempių ciklas statusas T sritis fizika atitikmenys: angl. stress cycle vok. Spannungszyklus, m rus. цикл напряжений, m pranc. cycle de contraintes, m … Fizikos terminų žodynas

цикл напряжений — [stress cycle] совокупность последовательных значений напряжений за период их изменения. Различают следующие циклы напряжений: асимметричный, при котором максимальное и минимальные напряжения не равны; знакопеременные напряжение изменяется по… … Энциклопедический словарь по металлургии

ЦИКЛ НАПРЯЖЕНИЙ — совокупность изменений напряжения за один полный период при установившемся режиме нагружения изделия или образца (при испытаниях на выносливость). Различают симметричные Ц. н., когда наибольшее и наименьшее напряжения равны по значению, но… … Большой энциклопедический политехнический словарь

Цикл — совокупность процессов в системе периодически повторяющихся движений, при которых объект, подвергающийся изменению в определенной последовательности, вновь приходит в исходное положение. Источник: ГОСТ 2846 … Словарь-справочник терминов нормативно-технической документации

цикл производства — [production cycle (lead)] совокупность процессов, обеспечивающих многократное повторное участие веществ в производстве («незамкнутый цикл») и его сосуществование с окружающей средой соответствие требованиям экологии (ПДК на выбросы). К этим… … Энциклопедический словарь по металлургии

Цикл — [cycle] совокупность взаимосвязанных процессов, работ, явлений, образующих законченный круг развития чего либо: Смотри также: термодинамический цикл цикл напряжений цикл производства … Энциклопедический словарь по металлургии

Цикл нагружения — совокупность последовательных значений напряжений за один период их изменения. Для фиксированной точки ВЗС подкрановой балки один цикл нагружения местным воздействием реализуется при проезде одного катка крана. Источник … Словарь-справочник терминов нормативно-технической документации

Цикл изменении напряжения — 28 . Цикл изменении напряжения изменение напряжения от исходного значения до конечного, равного исходному, при котором достигаются одно максимальное и одно минимальное значения напряжений. Источник … Словарь-справочник терминов нормативно-технической документации

Читайте также:  Пищит стабилизатор напряжения что делать

термодинамический цикл — [thermodynamic cycle] круговой процесс в термодинамической системе. Термодинамический цикл сочетание термодинамических процессов, в первую очередь изотермических, адиабатических, изобарических, изохорических. К термодинамическим отсят циклы:… … Энциклопедический словарь по металлургии

Источник

Циклы напряжений

Различают следующие основные циклы напряжений :

симметричный знакопеременный — наибольшее и наименьшее напряжения противоположны по знаку и одинаковы по числовому значению (рис. 161, I, а);

асимметричный знакопеременный — наибольшее и наименьшее напряжения противоположны по знаку и неодинаковы по числовому значению (I, б);

отнулевой (пульсирующий) — напряжения изменяются от нуля до максимума (I, в);

знакопостоянный — наибольшее и наименьшее напряжения одинаковы по знаку (I, г);

сложные — разнообразные сочетания перечисленных выше циклов (I, д).

Основные характеристики циклов :

период цикла — продолжительность одного цикла;

частота циклов — число циклов в единицу времени (величина обратная периоду цикла).

σmax — наибольшее по алгебраическому значению напряжение цикла (растягивающие напряжения считаются положительными, сжимающие — отрицательными);

σmin — наименьшее по алгебраическому значению напряжение цикла;

σm = 0,5 (σmах + σmin) — среднее напряжение цикла;

σa = 0,5(σmах – σmin) — амплитуда напряжений цикла (величину 2σa называют размахом напряжений цикла);

r = σminmах — коэффициент асимметрии цикла напряжений.

Напряжения цикла берут с их знаком.

Значения r для различных циклов приведены на рис. 161, II (верхняя шкала). При симметричных циклах г = –1; отнулевых r = 0; асимметричных знакопеременных 0 > r > –1; знакопостоянных 0 коэффициент амплитуды , представляющий собой отношение амплитуды напряжений σa = 0,5(σmах – σmin) к максимальному напряжению цикла σmах:

Величина а колеблется от 1 (симметричные циклы) до 0 (статическая нагрузка) и имеет постоянный знак для всех циклов (рис. 161, III, жирная линия). Пределы выносливости обозначают соответствующим буквенным символом с цифровым индексом а (например, σ1; σ0,5; σ0,25 — пределы выносливости соответственно для симметричного, отнулевого и знакопостоянного цикла с а = 0,25).

Наиболее распространен способ определения предела выносливости при циклическом симметричном изгибе по Велеру. Консольный или двухопорный образец, вращающийся вокруг собственной оси с постоянной частотой, нагружают постоянной по направлению силой. За каждый оборот все точки поверхности образца в опасном сечении один раз проходят через зону максимального напряжения растяжения и один раз — через зону максимального напряжения сжатия, проделывая полный цикл знакопеременного симметричного изгиба. Частота циклов равна частоте вращения образца в единицу времени; суммарное число оборотов до разрушения равно разрушающему числу циклов. Такой вид изгибного нагружения ( круговой изгиб ) свойствен многим машиностроительным деталям (например, валам зубчатых колес, ременных и цепных передач).

Читайте также:  Устройства защиты оборудования от скачков напряжения

Условия работы материала при этом виде нагружения существенно отличаются от другого часто встречающегося вида нагружения — плоского изгиба (нагружение неподвижной детали симметричной циклически изменяющейся нагрузкой постоянного направления). В последнем случае усталостному нагружению подвергаются только две диаметрально противоположные зоны, расположенные в плоскости действия изгибающего момента. При круговом же изгибе последовательно нагружаются все периферийные зоны сечения. Здесь напряжения растяжения-сжатия, перемещаясь по периферии образца серповидно-охватывающим движением, затрагивают всю периферию образца. Каждая точка поверхности образца в опасном сечении, помимо максимальных напряжений, возникающих при переходе ее через плоскость изгибающего момента, дополнительно подвергается действию последовательно подходящих и уходящих напряжении при вращении образца.

Кроме того, при круговом изгибе напряжения, перекрывая всю периферию сечения образца, находят в нем наиболее слабые точки, становящиеся источником усталостных трещин, тогда как на неподвижном образце слабые точки не обязательно находятся в плоскости действия изгибающего момента.

С другой стороны, при круговом изгибе участки материала, выходя из нагруженных зон, подвергаются периодическому тепловому отдыху. При плоском изгибе нагруженные участки работают непрерывно.

Совершенно различны условия работы образцов с концентраторами типа шпоночных канавок и поперечных отверстий. При плоском изгибе концентратор, расположенный в плоскости изгиба, постоянно находится в зоне изгиба, попеременно подвергаясь напряжениям растяжения и сжатия и испытывая один раз за цикл тепловой отдых. При круговом изгибе концентратор периодически выходит из зоны изгиба, дважды за цикл (во время пересечения нейтральной оси), испытывая тепловой отдых.

Источник

ISopromat.ru

В подавляющем большинстве случаев напряжение изменяется периодически (рис. 10.1). Совокупность всех значений напряжений в течении одного периода называется циклом напряжений.

Характеристиками циклов напряжений являются:

  1. максимальное напряжение цикла – σmax;
  2. минимальное напряжение цикла – σmin;
  3. среднее напряжение цикла –

Циклы, имеющие одинаковые коэффициенты асимметрии цикла, называются подобными.

Подобные циклы

Наиболее распространенными являются:

разновидности циклов

  1. Симметричный цикл (рис. 10.2,а), в котором

При этом σm=0, r=-1.
Отнулевой (пульсирующий) цикл (рис. 10.2,б). Для этого случая

Любой асимметричный цикл можно представить как сумму симметричного цикла и постоянного напряжения.

В случае действительных переменных касательных напряжений остаются в силе все термины и соотношения, с заменой σ на τ.

Для оценки прочности материала при переменных напряжениях используется определяемая опытным путем характеристика – предел выносливости σr, который представляет собой наибольшее в алгебраическом смысле напряжение цикла, при котором образец выдерживает не разрушаясь неограниченно большое число циклов.

Практически установлено, что если стальной образец выдержал некоторое базовое число циклов NБ , и не разрушился, то он не разрушится и при любом другом большем числе циклов. Для стали и чугуна принимают NБ=10 7 .

Для цветных металлов и сплавов пользуются лишь понятием предела ограниченной выносливости при NБ=10 8 , т.к. они при очень большом числе циклов могут разрушиться и при небольших напряжениях.

На величину предела выносливости σr влияют различные факторы:

1) Асимметрия цикла.

Минимальное значение имеет предел выносливости при симметричном цикле ( r = — 1). Он в несколько раз меньше предела прочности, например, для углеродистой стали

для легированной стали

для серого чугуна

2) Вид деформации.

При растяжении-сжатии предел выносливости

3) Концентрация напряжений.

Снижение предела выносливости за счет наличия концентраторов напряжений (выточек, отверстий, шпоночных канавок, резких переходов от одних размеров детали к другим и др.) учитывается действительным коэффициентом концентрации напряжений кστ) > 1.

В неответственных расчетах и при отсутствии данных величину к можно определять по следующим эмпирическим соотношениям:

  1. при отсутствии острых концентраторов для детали с чисто обработанной поверхностью
  2. при наличии острых концентраторов напряжений

4) Качество обработки поверхности учитывается при помощи коэффициента β >1, значение которого для различного качества обработки поверхности приводится в таблицах и графиках.

5) Абсолютные размеры детали учитываются при помощи так называемого масштабного фактора αм>1. Значение αм для различных материалов в зависимости от диаметра детали определяются из специальных графиков. Приближенно величины масштабного фактора для валов может быть вычислена по эмпирической зависимости

где d – диаметр вала в сантиметрах.

Совместное влияние концентрации напряжений, качества обработки поверхности и размеров детали оценивается коэффициентом

Расчет на прочность при переменных напряжениях (расчет на выносливость) на практике обычно выполняется как проверочный. Условие прочности принято записывать в виде

где [n]=1,4–3,0 – нормативный коэффициент запаса усталостной прочности детали при данном цикле напряжений.

Коэффициент запаса прочности по нормальным напряжениям определяется по формуле

Здесь ψ — коэффициент, учитывающий влияние асимметрии цикла на предел выносливости. В случае, когда известна величина предела выносливости при пульсирующем цикле σ

При отсутствии значений σ) можно принимать

где s = 1400 МПа – для углеродистых и низколегированных сталей; s = 2000 МПа – для легированных сталей.

Наряду с коэффициентом запаса по усталостному разрушению должен быть определен коэффициент запаса по текучести

В качестве расчетного следует принять меньший из коэффициентов nσ и nσT.

Аналогично вычисляют и коэффициенты запаса по касательным напряжениям:

Для плоского напряженного состояния, когда действуют нормальные и касательные напряжения, коэффициент запаса определяется по эмпирической формуле

Источник