Меню

Цифровые регуляторы температуры схемы



Как сделать датчик температуры своими руками. Как сделать терморегуляторы своими руками

Среди многочисленного ассортимента полезных приборов, которые приносят в нашу жизнь комфорт, есть большое количество тех, которые можно сделать своими руками. К этому числу можно отнеси и терморегулятор, который включает или отключает нагревательные и холодильные оборудования в соответствии с определенной температурой, на которую он установлен. Такое устройство отлично подойдет на период холодной погоды, например для подвала, где нужно хранить овощи. Так как же сделать терморегулятор своими руками, и какие детали для этого понадобятся?

Терморегулятор своими руками: схема

Про конструкцию термостата можно сказать, что она не особа сложна, именно по этой причине большинство радиолюбителей начинают свое обучение именно с этого прибора, а так же именно на нем оттачивают свои навыки и мастерство. Схем прибора можно найти очень большое количество, но самой распространенной является схема с применением, так называемого компаратора.

Данный элемент имеет несколько входов и выходов:

  • Один вход отвечает подачу эталонного напряжения, которое отвечает необходимой температуре;
  • Второй получает напряжения от датчика температуры.

Сам компаратор принимает все поступающие показания и сравнивает их. В случае если будет генерировать сигнал на выходе, то он включит реле, которое подаст ток на обогревательный или холодильный аппарат.

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:

В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

Это три основные части системы поддержания заданных температурных параметров. Хотя, помимо них, в схеме могут участвовать и другие части наподобие промежуточного реле. Но они исполняют лишь дополнительную функцию.

Какие детали понадобятся: терморегулятор своими руками

Для датчика температуры чаще всего используют терморезистор, это элемент который регулирует электрическое сопротивление в зависимости от температурного показателя.

Так же часто применяют полупроводниковые детали:

  • Диоды;
  • Транзисторы.

На их характеристики температура должна оказывать такое же влияние. То есть при нагреве должен увеличиваться ток транзистора и при этом он должен престать работать, не смотря на входящий сигнал. Нужно учесть, что такие детали обладаю большим недостатком. Слишком сложно провести калибровку, говоря точнее, будет трудно привязать эти детали к некоторым датчикам температуры.

Однако на данный момент промышленность не стоит на месте, и вы можете увидеть приборы из серии 300, это LM335, которым все чаще рекомендуют воспользоваться специалисты и LM358n. Не смотря на очень низкую стоимость, данная деталь занимает первую позицию в маркировках и ориентируется на сочетание с бытовой техникой. Стоит упомянуть, что модификации этой детали LM 235и 135 успешно применяются в военных сферах и промышленности. Включая в свою конструкцию около 16 транзисторов, датчик способен работать в качестве стабилизатора, а его напряжение будет полностью зависеть от температурного показателя.

Зависимость заключается в следующем:

  1. На каждый градус будет приходиться около 0, 01 В, если ориентироваться на Цельсий, то на показатель 273 результат на выходе составит 2, 73В.
  2. Диапазон работы ограничивается в показателе от -40 до +100 градусов. Благодаря таким показателям, пользователь полностью избавляется от регулирований методом проб и ошибок, а требуемая температура будет в любом случае обеспечена.

Так же кроме датчика температур вам потребуется компаратор, лучше всего приобрести LM 311, который выпускает тот же производитель, потенциометр для того чтобы сформировать эталонное напряжение и выходную установку чтобы включать реле. Не забудьте приобрести блок питания и специальные индикаторы.

Читайте также:  Микросхема tda1085c регулятор оборотов двигателя

Контроль в помещениях

Возможен вариант контроля терморегулятора в нескольких помещениях.

Типовая схема терморегулятора для погреба.

Приборы обозначаются латинскими буквами и цифрами. Например, LM135. Чтобы не ошибиться в выборе, запомните: 1 — применение в военной технике, 2 — применение в производственных аппаратах и устройствах, 3 — применение в бытовых приборах. Российским аналогом является обозначение транзисторов — 2Т (военный) и КТ (массовый). Принцип действия такого датчика таков: при повышении температуры увеличивается напряжение стабилизации, то есть это стабилитрон. Удостовериться в правильности выбора можно, почитав технические характеристики прибора. Точка калибровки указана в кельвинах. Температурная шкала указана в градусах по Цельсию.

Вспоминая школьный курс физики, переводите 0С= 0+273=273К. Рабочий диапазон датчика от -40 до 100°C. Если используется такой датчик, нет нужды в сомнительных опытах. Достаточно рассчитать напряжение на выходе стабилитрона, а затем это значение указать задающим на входе компаратора (сравнивающего устройства). Температурный сенсор LM335 стоит недорого — порядка 35-40 рублей. Взяв за основу этот термодатчик, нарисуйте схему терморегулятора для погреба.

Принципиальная электрическая схема терморегулятора.

На практике она дополнится выходным устройством для включения нагревателя, блоком питания и индикатором работы.

Следующий важный элемент — компаратор, например LM311. Он имеет два входа — прямой (2), обозначенный «+», и инверсный (3), обозначенный «-», и один выход. На схеме выход компаратора обозначен цифрой 7. Работает это устройство так: напряжение на входе 2 больше, чем на входе 3, на выходе получаем высокий уровень. Транзистор открылся, подключил нагрузку. Потенциометр, подключенный к прямому входу, устанавливает температуру — задает порог срабатывания компаратора. При обратной ситуации (напряжение на входе 2 меньше, чем на входе 3), на выходе уровень понижается. Повышается температура, срабатывает термореле, компаратор переходит на низкий уровень, транзистор закрывается, ТЭН выключается. Этот цикл повторяется беспрерывно.

Привет всем любителям электронных самоделок. Недавно я по быстрому смастерил электронный терморегулятор своими руками, схема устройства очень проста. В качестве исполнительного устройства используется электромагнитное реле с мощными контактами, которые могут выдержать ток до 30 ампер. Поэтому рассматриваемая самоделка может использоваться для разных бытовых нужд.

По нижеприведенной схеме, терморегулятор можно использовать, например, для аквариума или для хранения овощей. Кому то он может пригодиться при использовании совместно с электрическим котлом, а кто-то его может приспособить и для холодильника.

Регулятор температуры своими руками: питание и нагрузка

Что касается подключения LM 335 то оно должно быть последовательным. Все сопротивления необходимо подобрать так, чтобы общая величина тока, который проходит через термодатчик соответствовала показателям от 0,45 мА до 5 мА. Превышения отметки допускать нельзя, так как датчик будет перегреваться, и показывать искаженные данные.

Запитка терморегулятора может происходить несколькими способами:

  • С помощью блока питания с ориентировкой на 12 В;
  • С помощью любого другого устройства, питание которого не превышает вышеуказанный показатель, но при этом ток, протекающий через катушку не должен превышать 100 мА.

Еще раз напомним о том, что показатель тока в цепи датчика не должен превышать 5 мА, по этой причине придется использовать транзистор с большой мощностью. Лучше всего подойдет КТ 814. Конечно, если вы хотите избежать применения транзистора, можно использовать реле с меньшим уровнем тока. Он сможет работать от напряжения в 220 В.

Самодельный терморегулятор: пошаговая инструкция

Если вы приобрели все необходимые составляющие для сборки, осталось рассмотреть подробную инструкцию. Рассматривать будем на примере датчика температуры рассчитанного на 12В.

Самодельный регулятор температуры собирается по следующему принципу:

  1. Подготавливаем корпус. Можно использовать старые оболочки от счетчика, например от установки «Гранит-1».
  2. Схему подбираете ту, которая вам больше понравится, но можно и сориентироваться и на плату от счетчика. Прямой ход с пометкой «+» необходим для подключения потенциометра, Инверсионный вход с о будет служить для подключения термодатчика. Если так случилось, что напряжение на прямом входе будет выше требуемого, на выходе установится высокая отметка и транзистор начнет подавать питание на реле, а оно в свою очередь на нагревательный элемент. Как только напряжение на выходе превысит допустимую отметку – реле отключится.
  3. Для того чтобы терморегулятор срабатывал вовремя и перепады температур были обеспечены, потребуется сделать с помощью резистора связь отрицательного типа, которая образуется между прямым входом и выходом на компараторе.
  4. Что касается трансформатора и его питания, то здесь может понадобиться индукционная катушка от старого электрического счетчика. Для того чтобы напряжение соответствовало показателю в 12 вольт, вам нужно будет сделать 540 витков. Уместить их получится только в том случае, если диаметр провода будет не более 0,4 мм.
Читайте также:  Регулятор для мотора 10а

Вот и все. В этих небольших действиях и заключается вся работа по созданию терморегулятора своими руками. Возможно, самому без определенных навыков сделать его сразу и не получится, однако с опорой на фото и видео инструкции вы сможете испытать все свои умения.

Благодаря простой конструкции, самостоятельно созданный термоконтроллер может быть использован где угодно.

  • Для теплого пола;
  • Для погреба;
  • Котла отопления;
  • Может заняться регулировкой температуры воздуха;
  • Для духовки;
  • Для аквариума, где будет контролировать температурный показатель воды;
  • Для того чтобы контролировать температурное значение насоса электрокотла (его включения и отключение);
  • И даже для автомобиля.

Не обязательно использовать цифровой, электронный или механический покупной термовыключатель. Купив недорогое термореле, сделать регулировку мощности на симисторе и термопаре и ваш самодельный аппарат будет работать не хуже покупного.

Достоинства и недостатки

Даже простой терморегулятор своими руками имеет массу достоинств и положительных моментов. Говорить же о заводских многофункциональных устройствах и вовсе не приходится.

Регуляторы температуры позволяют:

  1. Поддерживать комфортную температуру.
  2. Экономить энергоресурсы.
  3. Не привлекать к процессу человека.
  4. Соблюдать технологический процесс, повышая качество.

Из недостатков можно назвать высокую стоимость заводских моделей. Конечно, самодельных приборов это не касается. А вот производственные, которые требуются при работе с жидкими, газообразными, щелочными и другими подобными средами, имеют высокую стоимость. Особенно если прибор должен иметь множество функций и возможностей.

При оборудовании погреба необходимо создать такой температурный режим, при котором все запасы будут сохраняться максимально долго. А чтобы его поддерживать, потребуется терморегулятор — прибор, который помогает поддерживать заданную температуру. Это устройство используется во многих бытовых приборах: утюгах, холодильниках, паяльниках. Как сделать терморегулятор для погреба своими руками?

Источник

Цифровые регуляторы температуры схемы

Вашему вниманию предлагаются схемы двух термостатов: первый — для жидкостных сред на диапазон температур от 00 С до +125 0С (хотя не возбраняется и для воздушной среды),

второй — для мощных электронагревателей, например — муфельной печи на диапазон температур +200С. +10000С.

На схемах сделана разбивка на функциональные узлы (или блоки). У обоих термостатов есть одинаковые узлы:
Цифровой индикатор температуры, по которому производится отсчёт показаний и установка заданной температуры (схема находится на нашем сайте);
Узел сравнения измеренной температуры с заданной;
Узел пропорционального управления нагревателем;
Исполнительный узел включения нагревателя;
Источники питания и задания образцовых напряжений.
Схема цифрового индикатора подробно описана в статье «Цифровой индикатор», а узел измерения температуры для жидкостного термостата рассмотрен в статье «Превращение цифрового индикатора в цифровой термометр». Обе статьи расположены на нашем сайте.

Рассмотрим теперь работу узла пропорционального управления нагревателем.
Большинство простых схем регулировки температуры реализуют так называемый «релейный» способ управления нагревателем — пока температура ниже заданной, нагреватель включён, когда выше заданной — выключен. Этому способу присущ недостаток — нагреватель шурует на всю катушку, даже когда температура близка к заданной. В результате, после отключения нагревателя, температура по инерции выскакивает за заданный предел, потом опускается до температуры включения, потом снова выскакивает за пределы — то есть не поддерживается на заданном уровне, а колеблется около него вверх вниз. Хорошо, если этот процесс — затухающий. Но всё равно выход температуры свыше заданного предела не желателен. Вот для борьбы с этим явлением и применён узел пропорционального управления. Пока температура ниже порога срабатывания узла, нагреватель включён постоянно. По мере приближения к заданной температуре узел начинает выключать нагреватель на некоторые периоды времени, которые тем больше, чем ближе измеренная температура к заданной. Таким образом, при подстройке порога включения узла, на жидкостном термостате достигалась точность поддержания температуры 0,1 0С. На термостате для муфеля дело обстоит хуже, там из-за очень большой температурной инерции камеры наблюдается «выбег» температуры до 10 0С, но при температурах несколько сот градусов это не существенно. Соглашусь с возражениями, что подобный узел можно реализовать на генераторе линейно меняющегося напряжения и компараторе, но предложенная схема проста, и вполне повторяема. Выход узла нагружен на оптронный тиристор типа МОС3061, который, в свою очередь, включает мощный тиристор, управляющий нагревателем. Тиристорный оптрон МОС3061 примечателен тем, что включается при переходе коммутируемого напряжения через ноль, и потому практически исключены коммутационные помехи. ( Ранее Сэр Мурр городил целую схему для реализации этого принципа работы — на трёх транзисторах и маломощном тиристоре — примечание кота Сэра Мурра). И ещё одна особенность предложенного узла — управление мощностью осуществляется целым числом периодов сетевого напряжения, а не углом отсечки, что тоже способствует уменьшению помех. Ну, узел питания в описании не нуждается. Образцовое напряжение 1,000 вольт- эквивалент температуры +10000С для муфеля или +100,00С для жидкости. Можно выбрать и другие значения.

Читайте также:  Регулятор давления сузуки сх4

Теперь об узле измерения температуры для муфеля. Измерение температуры — термопарой. Для компенсации температуры холодного спая (специалисты знают, что это такое) используются две одинаковые термопары- одна, верхняя по схеме, — измерительная и находится внутри печи; вторая, -нижняя по схеме, находится на входных клеммах . Термопары изготовлены самостоятельно , путём сварки в пламени газовой горелки двух кусков термопарных проводов типа ТХА длиной 2 метра- сварены оба конца. Потом отрезается одна термопара длиной несколько сантиметров — это будет компенсационная термопара. А всё остальное — измерительная термопара. АХТУНГ! Не забывайте про полярность включения термопар на схеме — они включены встречно!
На выходе усилителя сигнала термопары установлен резистор, которым производится калибровка измеряемой температуры. С одной стороны, если известна температурная характеристика термопары, то можно сразу пересчитать термо-ЭДС в температуру. Но если характеристика неизвестна? Или термопара изготовлена неизвестно из чего? ( Можно в качестве одного из проводов взять провод из лампочки накаливания, на котором держится нить, а в качестве другого провода — стальной, или нихромовый — пробуйте! — примечание кота Сэра Мурра). Вот здесь подстроечный резистор и пригодится.

Сразу же расскажу о процессе калибровки.
Подстроечник Р1 устанавливаем в верхнее положение, опускаем измерительную термопару в смесь воды со льдом, и подстроечником Р5 устанавливаем на индикаторе 0 градусов. Затем на газовой горелке расплавляем много — много свинца ( чем больше, тем лучше) и помещаем туда измерительную термопару, предварительно извлекя. извлеча! (Грамотей! Загляни на сайт «GRAMOTA.RU» — примечание кота Сэра Мурра) термопару из холодной ванны и просушив её. Начинаем наблюдать по цифровому индикатору за процессом остывания предварительно расплавленного свинца. В процессе остывания будет проходиться точка кристаллизации расплава. В этой точке температура будет оставаться постоянной, и мы успеем её зафиксировать. Теперь понятно, зачем свинца чем больше, тем лучше? Правильно, чтобы чётче зафиксировать нашу контрольную точку- +327,50С. Но! Это — температура плавления и кристаллизации чистого свинца, без примесей! Температура кристаллизации свинцового сплава будет другой! (Температура плавления или кристаллизации олова +2320 С, цинка+ 419,60С- примечание кота Сэра Мурра) Процесс кристаллизации мы фиксируем по неизменности показаний измерителя, и визуально — по прекращению блеска жидкого металла. И вот теперь мы подстроечником Р5 устанавливаем заветную точку 327 на термометре.

А теперь немного о «подводных камнях» этого метода калибровки и измерения.
Наш измеритель — с линейной шкалой во всём диапазоне измерений. На самом деле характеристика любой термопары отличается от линейной, хотя и достаточно близка к ней. Притом, чем чувствительнее термопара, тем нелинейнее. Промышленные микроконтроллерные измерители учитывают эту нелинейность, и вносят соответствующие поправки. А мы с вами игнорируем эту неизвестную нелинейность. Шут с ней — нам и так хватает точности!
А теперь наш термометр можно проверить по температуре кипения воды +100 С, если вы живёте на высоте не более 500 метров над уровнем моря. Иначе придётся вносить поправку на понижение температуры кипения при уменьшении атмосферного давления. Или наоборот — на повышение, если вы — гном на собственной подземной фабрике.

Теперь немного рекомендаций о конструктивном исполнении. Вводы- выводы силовых цепей лучше делать на винтовых клеммных соединителях- разъёмы от компьютерных сетевых кабелей не выдерживают ток более 10 ампер. Например, на муфельной печи они расплавились. Правда, и муфель- 3-х киловаттный.

Фотка

Для жидкостного термостата надо обязательно организовать циркуляцию воды — любым способом — насосом, аэрационным компрессором от аквариума, или перемешиванием ложкой. Иначе температура на дне и на поверхности может отличаться на несколько градусов. А мы претендуем на точность 0,1 градуса.. Для принудительного включения охлаждения жидкостного термостата используется компаратор на МС А4. Конечно, этот узел не обязателен, но может быть полезен, если вам понадобится регистрировать процесс охлаждения от заданной температуры.
Установка требуемой температуры осуществляется нажатием кнопочки, которая исходно зафиксирована на измерение температуры. А как нажал на кнопочку — пожалуйста, задавай температуру, накручивая установочный резистор (желательно многооборотный).
Ну, вроде всё.
Автор благодарен своему коту за высказанные ценные замечания во время написания статьи.

Источник