Меню

Требования по мощности отопления



Правильный расчет тепловой мощности системы отопления по площади помещения

1. Необходимость расчета тепловой мощности системы отопления
2. Варианты приблизительных расчетов
3. Точное вычисление тепловой мощности
4. Пример выполнения расчета

Прежде, чем приступить к монтажу автономной системы отопления в собственном доме или квартире, владельцу недвижимости необходимо иметь проект. Создание его специалистами подразумевает, в том числе, что будет выполнен расчет тепловой мощности для помещения, имеющего определенную площадь и объем. На фото можно увидеть, как может выглядеть отопительная система частного домовладения.

Необходимость расчета тепловой мощности системы отопления

Потребность в вычислении тепловой энергии, необходимой для обогрева комнат и подсобных помещений, связана с тем, что нужно определить основные характеристики системы в зависимости от индивидуальных особенностей проектируемого объекта, включая:

  • назначение здания и его тип;
  • конфигурацию каждого помещения;
  • количество жильцов;
  • географическое положение и регион, в котором находится населенный пункт;
  • прочие параметры.

Расчет необходимой мощности отопления является важным моментом, его результат используют для вычисления параметров отопительного оборудования, которое планируют установить:

  1. Подбор котла в зависимости от его мощности. Эффективность функционирования отопительной конструкции определяется правильностью выбора нагревательного агрегата. Котел должен иметь такую производительность, чтобы обеспечить обогрев всех помещений в соответствии с потребностями людей, проживающих в доме или квартире, даже в наиболее холодные зимние дни. Одновременно при наличии у прибора избыточной мощности часть вырабатываемой энергии не будет востребована, а значит, некоторая сумма денег потратится напрасно.
  2. Необходимость согласовывать подключение к магистральному газопроводу. Для присоединения к газовой сети потребуется ТУ. Для этого подают заявку в соответствующую службу с указанием предполагаемого расхода газа на год и оценкой тепловой мощности в сумме для всех потребителей.
  3. Выполнение расчетов периферийного оборудования. Расчет тепловых нагрузок на отопление необходим для определения длины трубопровода и сечения труб, производительности циркуляционного насоса, типа батарей и т.д.

Варианты приблизительных расчетов

Выполнить точный расчет тепловой мощности системы отопления довольно сложно, его могут сделать только профессионалы, имеющие соответствующую квалификацию и специальные знания. По этой причине данные вычисления обычно поручают специалистам.

В тоже время существуют и более простые способы, позволяющие приблизительно оценить величину требуемой тепловой энергии и их можно сделать самостоятельно:

  1. Нередко применяют расчет мощности отопления по площади (детальнее: «Расчет отопления по площади — определяем мощность отопительных приборов»). Считается, что жилые дома возводятся по проектам, разработанным с учетом климата в определенном регионе, и что в проектных решениях заложено использование материалов, которые обеспечивают требуемый тепловой баланс. Поэтому при расчете принято умножать величину удельной мощности на площадь помещений. Например, для Московского региона данный параметр находится в пределе от 100 до 150 ватт на один «квадрат».
  2. Более точный результат будет получен, если учитывать объем помещения и температуру. Алгоритм вычисления включает высоту потолка, уровень комфорта в отапливаемом помещении и особенности дома.

Используемая формула выглядит следующим образом: Q = VхΔTхK/860, где:

V – объем помещения;
ΔT – разница между температурой внутри дома и снаружи на улице;
К – коэффициент теплопотерь.

Поправочный коэффициент позволяет учесть конструктивные особенности объекта недвижимости. Например, когда определяется тепловая мощность системы отопления здания, для строений с обычной кровлей из двойной кирпичной кладки К находится в диапазоне 1,0–1,9.

  • Метод укрупненных показателей. Во многом похож на предыдущий вариант, но его применяют для вычисления тепловой нагрузки для систем отопления многоквартирных зданий или других больших объектов.
  • Все три вышеперечисленные способы, позволяющие сделать расчет необходимой теплоотдачи, дают приблизительный результат, который может отличаться от реальных данных или в меньшую, или в большую сторону. Понятно, что монтаж маломощной отопительной системы не обеспечит требуемую степень обогрева.

    В свою очередь, избыток мощности у отопительного оборудования приведет к быстрому износу приборов, перерасходу топлива, электроэнергии, а соответственно и денежных средств. Подобные расчеты обычно применяют в несложных случаях, например, при выборе котла.

    Точное вычисление тепловой мощности

    Степень теплоизоляции и ее эффективность зависят от того, насколько качественно она сделана и от конструктивных особенностей зданий. Основная часть теплопотерь приходится на наружные стены (примерно 40%), затем следуют оконные конструкции (около 20%), а крыша и пол – это 10%. Остальное тепло покидает дом через вентиляцию и двери.

    Поэтому расчет тепловой мощности системы отопления должен учитывать данные нюансы.

    Для этого используют поправочные коэффициенты:

    • К1 зависит от типа окон. Двухкамерным стеклопакетам соответствует 1, обычному остеклению – 1,27, трехкамерному окну – 0,85;
    • К2 показывает степень теплоизоляции стен. Находится в пределе от 1 (пенобетон) до 1,5 для бетонных блоков и кладки в 1,5 кирпича;
    • К3 отражает соотношение между площадью окон и пола. Чем больше оконных рам, тем сильнее потери тепла. При 20% остекления коэффициент равен 1, а при 50% он увеличивается до 1,5;
    • К4 зависит от минимальной температуры снаружи здания на протяжении отопительного сезона. За единицу принимают температуру -20 °C, а затем на каждые 5 градусов прибавляют или вычитают 0,1;
    • К5 учитывает количество наружных стен. Коэффициент для одной стены равен 1, если их две или три, тогда он составляет 1,2, когда четыре – 1,33;
    • К6 отражает тип помещения, которое находится над определенной комнатой. При наличии сверху жилого этажа величина поправки – 0,82, теплого чердака – 0,91, холодного чердака — 1,0;
    • К7 – зависит от высоты потолков. Для высоты 2,5 метра это 1,0, а для 3-х метров — 1,05.

    Когда все поправочные коэффициенты известны, делают расчет мощности системы отопления для каждого помещения, используя формулу:

    • Qi=qхSiхK1хK2хK3хK4хK5хK6хK7, где q =100 Вт/м², а Si – площадь комнаты.
    Читайте также:  При каком сопротивлении мощность выделяемая во внешней цепи такая же как

    Расчетная величина увеличивается, если коэффициент больше 1 или уменьшает, если он меньше единицы. Узнав данный параметр для каждого помещения, узнают величину мощности всей отопительной системы согласно формуле: Q=Σ Qi, i = 1…N, где N – это общее количество помещений в здании (прочитайте также: «Тепловой расчет помещения и здания целиком, формула тепловых потерь»).

    Как правило, для обеспечения запаса тепловой энергии на всевозможные непредвиденные случаи результат увеличивают на 15–20%. Это могут быть сильнейшие морозы, разбитое окно, поврежденная теплоизоляция и т.д.

    Пример выполнения расчета

    Допустим, необходимо знать, какая должна быть тепловая мощность системы отопления для дома из бруса площадью 150 м² с теплым чердаком, тремя внешними стенами и двойными стеклопакетами на окнах. При этом высота стен 2,5 метра, а площадь остекления составляет 25%. Минимальная температура на улице в самую морозную пятидневку находится на отметке -28 °C.

    Поправочные коэффициенты в данном случае будут равны:

    • К1 (двухкамерный стеклопакет) = 1,0;
    • К2 (стены из бруса) = 1,25;
    • К3 (площадь остекления) = 1,1;
    • К4 (при -25 °C -1,1, а при 30°C) = 1,16;
    • К5 (три наружные стены) = 1,22;
    • К6 (сверху теплый чердак) = 0,91;
    • К7 (высота помещения) = 1,0.

    В результате полная тепловая нагрузка будет равна:

    Q=100 Вт/ м²х135 м²х1,0х1,25х1,1х1,16х1,22х0,91х1,0 = 23,9 кВт.

    В итоге мощность отопительной системы составит: W=Qх1,2 = 28,7 кВт.

    В том случае, когда бы использовался упрощенный метод вычислений, основанный на расчете мощности отопления согласно площади, то результат был бы совсем иной:

    100–150 Вт х150м² = 15–22,5 кВт

    Отопительная система функционировала бы без запаса по мощности — на пределе. Приведенный пример является подтверждением важности применения точных способов, позволяющих определять тепловые нагрузки на отопление.

    Пример расчета тепловой мощности системы отопления на видео:

    Источник

    Системы водяного отопления загородного дома

    ПРОЕКТИРОВАНИЕ И СТРОИТЕЛЬСТВО ИНЖЕНЕРНЫХ СИСТЕМ ОДНОКВАРТИРНЫХ ЖИЛЫХ
    ДОМОВ.

    СНиП 31-02 предъявляет к отоплению дома требования:
    к температуре внутреннего воздуха в помещениях дома в течение отопительного периода при расчетных параметрах наружного воздуха, обеспечиваемой системой отопления;

    к максимальной температуре поверхностей доступных частей отопительных приборов и трубопроводов, к температуре горячего воздуха в выпускных отверстиях приборов воздушного отопления, а также к температуре воды в системе горячего водоснабжения;

    к обеспечению систем отопления и горячего водоснабжения средствами автоматического или ручного регулирования, а также приборами учета тепловой энергии и воды;
    к устройству и размещению каминов;

    к доступности оборудования, арматуры и приборов системы отопления для осмотра, технического обслуживания, ремонта и замены;

    к устройству и изоляции дымоходов.

    7.1 Общие требования

    7.1.1. Системы отопления должны распределять тепло так, чтобы во всех жилых комнатах и других помещениях, где могут постоянно находиться люди, обеспечивались необходимые параметры микроклимата.
    7.1.2. В холодный период года температуру отапливаемых помещений, когда они временно не используются, допускается принимать не ниже 12°С, обеспечивая восстановление нормируемой температуры к началу использования помещения.
    7.1.3. Проектирование системы отопления дома следует осуществлять с учетом необходимости обеспечивать равномерное нагревание воздуха помещений, а также гидравлическую и тепловую устойчивость системы теплоснабжения. При этом должны быть предусмотрены меры по обеспечению пожарной безопасности и эксплуатационной надежности системы.
    7.1.4. В качестве теплоносителя в системе отопления может использоваться вода (водяное отопление) или воздух (воздушное отопление). Применение систем воздушного отопления эффективно в условиях использования принудительной (механической) вентиляции.
    7.1.5. В одноквартирных домах рекомендуется в дополнение к отопительным приборам, располагаемым, как правило, под оконными проемами, устраивать напольное отопление.
    7.1.6. Следует предусматривать ручное или автоматическое регулирование систем отопления и горячего водоснабжения дома.
    7.1.7. Системы должны быть запроектированы в соответствии с требованиями СНиП 2.04.05, смонтированы и испытаны — в соответствии с требованиями СНиП 3.05.01.

    7.2 Системы водяного отопления

    7.2.1. Для водяного отопления одноквартирного дома может быть использована система с естественным или искусственным побуждением циркуляции теплоносителя (воды). Система водяного отопления включает теплогенератор (котел), трубопроводы, расширительный бак, отопительные приборы, запорную и регулировочную арматуру и воздухоотводчики. В системе с искусственным побуждением предусматриваются насосные установки. При выборе системы водяного отопления следует учитывать, что в системах с естественным побуждением теплогенераторы (котлы) рекомендуется располагать ниже отопительных приборов и что при применении таких систем удаление отопительных приборов от теплогенератора не должно превышать 30 м.
    7.2.2. Рекомендуется применять двухтрубные системы отопления. В поэтажных трубных разводках рекомендуется применять:
    — «лучевую» схему с центрально расположенными подающим и обратным коллекторами;
    — попутную двухтрубную схему с разводкой по периметру дома.
    7.2.3 Температура теплоносителя в подающем трубопроводе, в том числе в системах с трубами из полимерных материалов, не должна превышать 90 °С. Разность гидравлических сопротивлений в ветвях трубопровода водяного отопления не должна отличаться более чем на 25 % от среднего значения. Рекомендуется предусматривать применение отопительного температурного графика 80 -60 «С при расчетной наружной температуре воздуха.
    7.2.4 Температура открытой поверхности радиатора водяного отопления, если не приняты меры по предотвращению случайного касания ее человеком, не должна превышать 70 °С.

    7.2.5 Трубопроводы

    7.2.5.1 Трубопроводы должны собираться из труб и фасонных деталей, изготовленных из материалов, выдерживающих воздействия рабочих температур и давлений в системе теплоснабжения в течение срока эксплуатации, принимаемого не менее 25 лет. Рекомендуется применять трубы из полимерных материалов (в том числе металлополимерные трубы), а также медные и стальные трубы. При применении труб из полимерных материалов рекомендуется руководствоваться положениями СП 41-102.
    7.2.5.2 Трубопроводы систем отопления рекомендуется прокладывать скрыто (в штробах, плинтусах, шахтах и каналах). Открытую прокладку допустимо предусматривать только для металлических трубопроводов, так как трубы из полимерных материалов не должны прокладываться открыто в местах, где возможно их механическое повреждение и прямое облучение ультрафиолетовыми лучами. При скрытой прокладке трубопроводов следует предусматривать люки в местах расположения разборных соединений и арматуры.
    7.2.5.3. В трубопроводах отопления следует предусматривать устройства для их опорожнения. В системах напольного отопления и при скрытой прокладке трубопроводов в конструкции пола допускается предусматривать опорожнение отдельных участков систем продувкой их сжатым воздухом. Трубопроводы должны прокладываться с уклоном не менее 0,002. Отдельные участки трубопроводов при скорости движения воды в них не менее 0,25 м/с при необходимости допускается прокладывать без уклона.
    7.2.5.4 Трубопроводы в местах пересечения перекрытий, внутренних стен и перегородок следует прокладывать в гильзах. Края гильз должны быть на одном уровне с поверхностями стен, перегородок и потолков, но на 30 мм выше поверхности чистого пола. Зазоры и отверстия в местах пропуска трубопроводов через конструкции дома следует заделывать герметикам.
    7.2.5.5 Удаление воздуха из систем отопления следует предусматривать в верхних точках трубопроводов, в том числе у отопительных приборов, через проточные воздухосборники или воздухоотводчики. Применение непроточных воздухосборников допустимо при скорости движения воды в трубопроводе менее 0,1 м/с.
    7.2.5.6. На трубопроводах, прокладываемых в неотапливаемых и в отапливаемых помещениях, а также на трубопроводах, прокладываемых скрыто в наружных ограждающих конструкциях дома, для уменьшения потерь теплоты в верхней зоне (выше 1,2 м) следует предусматривать тепловую изоляцию.
    7.2.5.7 Теплоизоляционные покрытия на трубах должны быть стойкими к воздействию рабочих температур системы, а также влаги и плесени. Для теплоизоляции трубопроводов могут применяться материалы без ограничения показателей пожарной безопасности, кроме мест пересечения противопожарных преград. Для теплоизоляции трубопроводов рекомендуется применять материалы, предусмотренные в СП 41-103.

    Читайте также:  Как уменьшить потребляемую мощность водонагревателя

    7.2.6 Расширительные баки

    7.2.6.1. Для компенсации температурных расширений теплоносителя в независимых системах отопления следует предусматривать расширительные баки.
    7.2.6.2. В системе водяного отопления с искусственным побуждением циркуляции теплоносителя могут использоваться открытые или закрытые расширительные баки, располагаемые в помещении теплогенератора. Рекомендуется применять расширительные баки диафрагменного типа с тепловой изоляцией. В системе с естественным побуждением рекомендуется предусматривать открытый расширительный бак, устанавливаемый над главным стояком системы отопления.
    7.2.6.3 Требуемая вместимость бака устанавливается в зависимости от объема теплоносителя в системе отопления. Полезный объем открытого бака рекомендуется принимать равный 5 % емкости системы отопления.

    7.2.7 Отопительные приборы

    7.2.7.1 Отопительные приборы следует размещать, как правило, под световыми проемами в местах, доступных для осмотра, ремонта и очистки. Отопительные приборы не следует размещать в тамбурах, имеющих наружные двери.
    7.2.7.2. В качестве отопительных приборов могут применяться радиаторы или конвекторы, изготовленные из стали, меди, чугуна, алюминия, а также комбинированные (изготовленные из разных металлов).
    7.2.7.3. Для водяного напольного отопления следует применять пластмассовые, в том числе металлопластиковые трубы, укладываемые в конструкцию пола. Расчетная средняя температура поверхности пола и расчетная предельная температуры поверхности пола по осям труб должны быть приняты по СНиП 2,04.05. Соответствие фактической температуры поверхности полов указанным требованиям при заданной температуре теплоносителя в трубах должно достигаться с помощью укладки в конструкцию пола слоев тепловой изоляции, требуемая толщина которых определяется расчетом.
    7.2.7.4. В помещениях ванн и душевых полотенцесушители, не присоединенные к системе горячего водоснабжения, следует присоединять к системе отопления.

    7.2.8 Запорная и регулировочная арматура

    7.2.9 Насосные установки

    7.2.9.1. В автономной системе теплоснабжения с отдельным водоподогревателем для горячего водоснабжения рекомендуется устанавливать:
    — насос первого контура для подачи воды от теплогенератора в систему отопления и к подогревателю горячего водоснабжения;
    — циркуляционный насос горячего водоснабжения.
    7.2.9.2. В системе отопления и горячего водоснабжения рекомендуется предусматривать резервный циркуляционный насос, который должен использоваться при выходе из строя основного насоса. На случай отключения электричества во время отопительного периода рекомендуется предусматривать байпасную линию у теплогенератора, обеспечивающую минимальную циркуляцию теплоносителя для уменьшения вероятности замораживания системы.
    7.2.9.3. Для систем отопления и горячего водоснабжения одноквартирных домов рекомендуется использовать насосные установки производительностью от 0,5 до 3,0 м3/ч с напором от 5 до 30 кПа.

    Источник

    Сколько тепла в кВт вам требуется для обогрева дома — проверяем на калькуляторе!

    Евгений АфанасьевОпубликовал(а): Евгений Афанасьев
    Обновлено: 21.01.2020

    Если мы собираемся по максимуму экономить в той или иной сфере жизни, то необходимо хорошо представлять: куда, в каких количествах и на что тратятся наши деньги. А одной из наиболее чувствительных статей расходов семейного бюджета в наше время становятся коммунальные платежи. И если с затратами на электроэнергию относительная ясность имеется, так как по большей части все на виду и довольно понятно, то с отоплением – несколько сложнее.

    Сколько тепла нам требуется для обогрева жилья?

    Сколько тепла нам требуется для обогрева жилья?

    Неважно, какая схема или система применяется для этих целей, в первую очередь необходимо обладать информацией, сколько тепла нам требуется для обогрева жилья? Да, вопрос звучит именно так, пока без перехода в «денежную плоскость». Да мы и не сможет спрогнозировать финансовые расходы, пока не выразим требуемую тепловую энергию в каких-то понятных величинах. Например, в киловаттах.

    Вот этим и займемся сегодня.

    Немного общей информации – что такое требуемое количество тепла?

    Очень вкратце, все это и так известно – просто требуется небольшая систематизация.

    Современному человеку для комфортного проживания требуется создание определённого микроклимата, одной из важнейших составляющих которого является температура воздуха в помещении. И хотя «тепловые пристрастия» могут разниться, можно смело утверждать, что для большинства людей эта зона «температурного комфорта» лежит в диапазоне 18÷23 градуса.

    Читайте также:  Оценка производственной мощности проекта

    Но когда на улице, например, отрицательная температура, то естественные термодинамические процессы стремятся все подвести под «общую планку», и тепло начинает из жилой зоны уходить. Тепловые потери – это совершенно нормальное с точки зрения физики явление. Вся система утепления жилья направлена на максимальное снижение таких потерь, но полностью их устранить невозможно. А отсюда вывод — отопление дома как раз и предназначено для восполнения этих самых тепловых потерь.

    От тепловых потерь – никуда не деться, но очень важно хотя бы постараться свести их к возможному минимуму.

    От тепловых потерь – никуда не деться, но очень важно хотя бы постараться свести их к возможному минимуму.

    Как определиться с ними их количественно?

    Простейший способ расчета необходимой тепловой мощности основывается на утверждении, что на каждый квадратный метр площади требуется 100 ватт тепла. Или — 1 кВт на 10 м².

    Но даже не будучи специалистом, можно задуматься — а как такая «уравниловка» сочетается со спецификой конкретных домов и помещений в них, с размещением зданий на местности, с климатическими условиями региона проживания?

    Так что лучше применить иной, более «скрупулезный» метод подсчета, в котором будет приниматься во внимание множество различных факторов. Именно такой алгоритм и заложен в основу предлагаемого ниже калькулятора.

    Важно – вычисления проводятся для каждого отапливаемого помещения дома или квартиры отдельно. И лишь в конце подбивается общая сумма потребной тепловой энергии. Проще всего будет составить небольшую таблицу, в строках которой перечислить все комнаты с необходимыми для расчетов данными. Тогда, при наличии у хозяина под рукой плана своих жилых владений, много времени вычисления не займут.

    И еще одно замечание. Результат может показаться весьма завышенным. Но мы должны правильно понимать – в итоге показывается то количество тепла, которое требуется для восполнения теплопотерь в самых неблагоприятных условиях. То есть – для поддержания температуры в помещениях +20 ℃ при самых низких температурах на улице, характерных для региона проживания. Иными словами — на пике зимних холодов в доме будет тепло.

    Но такая супер-морозная погода, как правило, стоит весьма ограниченное время. То есть система отопления будет по большей части работать на более низкой мощности. А это означает, этот никакого дополнительного запаса закладывать особого смысла нет. Эксплуатационный резерв мощности будет и без того внушительным.

    Ниже расположен калькулятор, а под ним будут размещены необходимые краткие пояснения по работе с программой.

    Калькулятор расчета необходимой тепловой мощности для отопления помещений

    Пояснения по проведению расчетов

    Последовательно уносим данные в поля калькулятора.

    • Первым делом определим климатические особенности – указанием примерной минимальной температуры, свойственной региону проживания в самую холодную декаду зимы. Естественно, речь идет о нормальной для своего региона температуре, а не о каких-то «рекордах» в ту или иную стороны.

    Кстати, понятное дело, это поле не будет меняться при расчетах для всех помещений дома. В остальных полях – возможны вариации.

    • Далее идет группа из двух полей, в которых указываются площадь помещения (точно) и высота потолков (выбор из списка).
    • Следующая группа данных учитывает особенности расположения помещения:

    Количеств внешних стен, то есть контактирующих с улицей (выбор из списка, от 0 до 3).

    Расположение внешней стены относительно стороны света. Есть стены, регулярно получающие заряд тепловой энергии от солнечных лучей. Но северная стена, например, солнца не видит вообще никогда.

    — Если на местности, где расположен дом, выражено преобладание какого-то направления зимнего ветра (устойчивая роза ветров), то это тоже можно принять во внимание. То есть указать, находится ли внешняя стена на наветренной, подветренной или параллельной направлению ветра стороне. Если таких данных нет, то оставляем по умолчанию, и программа рассчитает, как для самых неблагоприятных условий.

    — Далее, указывается, насколько утеплены стены. Выбирается из трех предложенных вариантов. Точнее даже, из двух, так как в доме с вообще неутепленными стенами затевать отопление — абсолютная бессмыслица.

    — Два схожих поля поросят указать, с чем соседствует помещение «по вертикали», то есть что расположено сверху и снизу. Это поможет оценить размеры теплопотерь через полы и перекрытия.

    • Следующая группа касается окон в помещении. Здесь важно и их количество, и размеры, и тип, в том числе – особенности стеклопакетов. По совокупности этих данных программа выработает поправочный коэффициент к результату расчетов.
    • Наконец, на количество теплопотерь серьёзно влияет наличие в комнате дверей, выходящих на улицу, на балкон, в холодный подъезд и т.п. Если дверями регулярно в течение дня пользуются, то любое их открытие сопровождается притоком холодного воздуха. Понятно, что это требует возмещения в форме дополнительной тепловой мощности.

    Все данные внесены – можно «давить на кнопку». В результате пользователь сразу получит искомое значение тепловой мощности для конкретного помещения.

    Как уже говорилась, сумма всех значений даст результат за весь дом (за квартиру) в целом, в киловаттах.

    По этой величине, считая ее минимумом, подбирают, кстати, и котел отопления. И именно эта суммарная величина понадобится, когда придёт время считать реальные денежные расходы на эксплуатацию системы отопления.

    А данные по каждой из комнат тоже весьма полезны — для подбора и расстановки радиаторов отопления, или для выбора подходящей модели электрического обогревателя.

    Источник