Меню

Трансформатор для стабилизатора тока зарядного устройства



Регулируемый стабилизатор напряжения для зарядного устройства

Зарядное устройство для автомобильных аккумуляторов – незаменимая вещь, которая должна иметься у каждого автолюбителя, не зависимо от того, на сколько аккумулятор хорош, поскольку подводить он может в самую неудобную минуту.

Конструкции многочисленных зарядных устройств мы неоднократно рассматривали на страницах сайта. Зарядное устройство по идее ничто иное как блок питания со стабилизацией тока и напряжения. Работает просто – мы знаем, что напряжение заряженного автомобильного аккумулятора около 14-14,4 Вольт, на зарядном устройстве нужно выставить именно это напряжение, дальше выставить желаемый ток заряда, в случае кислотных стартерных АКБ это десятая часть емкости аккумулятора, например – аккумулятор 60 А/ч, заряжаем его током 6 Ампер.

Регулируемый стабилизатор напряжения для зарядного устройства

Регулируемый стабилизатор напряжения для зарядного устройства

В итоге по мере заряда аккумулятора ток будет падать и со временем примет нулевое значение – как только аккумулятор заряжен. Такая система используется во всех зарядных устройствах, процесс заряда не нужно постоянно контролировать, поскольку все выходные параметры зарядного устройства стабильны и не зависят от перепадов сетевого напряжения.

IMAGE00101[1]

Исходя из того становиться ясно, что для постройки зарядного устройства нужно иметь три узла.

1) Понижающий трансформатор либо импульсный источник питания плюс выпрямитель
2) Стабилизатор тока
3) Стабилизатор напряжения

С помощью последнего задается порог напряжения, до которого будет заряжаться аккумулятор и сегодня мы поговорим именно о стабилизаторе напряжения.

IMAGE00098[1]

Система прсота до безобразия, всего 2 активных компонентов, минимальные затраты, ну а сборка займет не более 10 минут при наличии всех компонентов.

Что мы имеем . полевой транзистор в качестве силового элемента, регулируемый стабилитрон, который задает напряжение стабилизации, это напряжение можно выставить вручную, с помощью переменного (а лучше подстроечного, многооборотного) резистора 3,3кОм. На вход стабилизатора можно подавать напряжение до 50 Вольт, на выходе уже получаем стабильное напряжение нужного номинала.

Читайте также:  Шевроле трейлблейзер стойки переднего стабилизатора

IMAGE00099[1]

Минимальное возможное напряжение 3Вольт (зависит от полевого транзистора) дело в том, что для того, чтобы полевой транзистор открылся на его затворе нужно иметь напряжение выше 3-х вольт (в некоторых случаях и больше) кроме полевых транзисторов, которые предназначены для работы в цепях с логическим уровнем управления.

Стабилизатор может коммутировать токи до 10 Ампер в зависимости от условий, в частности от типа полевого транзистора, от наличия радиатора и активного охлаждения.

Регулируемый стабилитрон TL431 популярная штука и встречается в любом компьютерном блоке питания, на нем построен контроль выходного напряжения, стоит рядом с оптопарой.

Регулируемый стабилизатор напряжения для зарядного устройства

Разобрал одно из своих зарядных устройств, чтобы показать как выглядит стабилизатор, за качество монтажа строго судить не нужно, зарядник 2 года работает у друга без нареканий, делал его на скорую руку особо не заморачивался.

И ещё хочу отметить один момент, если вы решили поменять масло в своём автомобиле, то хочу порекомендовать отличный торговый дом “Маслёнка”, который занимается именно в этом направлении. Заходите и выбирайте индустриальное масло, здесь нет подделок…

Источник

Три простые схемы регулятора тока для зарядных устройств

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.

Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Читайте также:  Подушки стабилизатора газ 3110

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.

Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.

Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно.

Читайте также:  Восстановление втулок стабилизатора своими руками

Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.

Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном.

Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

Выход операционного усилителя управляется мощным полевым транзистором.

То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Введите электронную почту и получайте письма с новыми поделками.

Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором,

в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.

Взамен будет нагреваться транзистор и от этого никуда не денешься.

Источник