Меню

Типы электросетей по напряжению



Напряжения электрических сетей

Напряжения электрических сетей

При передаче больших потоков электрической энергии неизбежны потери активной мощности, которые, согласно закону Джоуля — Ленца, равны:

W =(I·I)·R·t,

где I – величина силы тока, А;

R – активное сопротивление линии, Ом;

Для уменьшения потерь передача и распределение ЭЭ производятся на высоких напряжениях.

По уровню номинального напряжения электрические сети иногда делят на сети низкого (до 1 кВ), среднего (выше 1 кВ до 35 кВ включительно), высокого (110–220 кВ), сверхвысокого (330–750 кВ) и ультравысокого (выше 1000 кВ) напряжений. Напряжение приемников электроэнергии, генераторов и трансформаторов, при котором они нормально и наиболее экономично работают, называют номинальным. Это напряжение указывают в паспорте электрической машины и аппарата.

В установках трехфазного тока номинальным принято считать значение междуфазного напряжения. Поэтому если номинальное напряжение линии – 35 кВ, ее фазное напряжение будет в 3 раз меньше, т.е. 20,2 кВ.

Номинальные напряжения электрических сетей и присоединяемых к ним источников и приемников ЭЭ устанавливаются ГОСТом. Шкала номинальных напряжений для сетей переменного тока частотой 50 Гц:

— до 1000 В: 12, 24, 36, 42, 127, 220, 380 В;

— выше 1000 В: 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150 кВ.

Для электрических сетей трехфазного переменного тока напряжением до 1000 В и присоединенных к ним источников и приемников электроэнергии ГОСТ 721-78 устанавливает следующие значения номинальных напряжений:

— сети и приемники – 380/220 В; 660/380 В.

— источники – 400/230 В; 690/400 В.

Номинальное напряжение генераторов с целью компенсации потери напряжения в питаемой ими сети принимается на 5 % больше номинального напряжения этой сети. Номинальные напряжения первичных обмоток, повышающих трансформаторов, присоединяемых к генераторам, приняты также на 5 % больше номинальных напряжений подключаемых к ним линий. Первичные обмотки понижающих трансформаторов имеют номинальные напряжения, равные номинальным напряжениям питающих их линий.

Выбор стандартного напряжения определяет построение всей системы ЭСПП. Для внутрицеховых электрических сетей наиболее распространено напряжение 380/220 В, основное преимущество которого — возможность совместного питания силовых и осветительных ЭП. Наибольшая единичная мощность трехфазных ЭП 380/220 В, как правило, не должна превышать 200–250 кВт, допускающая применение коммутирующей аппаратуры на ток до 630 А. Значительное увеличение электрических нагрузок потребителей (их число и единичная мощность) привело к введению повышенного напряжения — 660 В.

Напряжение 660 В:

— целесообразно на предприятиях, на которых (по условиям планировки цехового оборудования, технологии и окружающей среды) нельзя или трудно приблизить цеховые ТП к ЭП. Это имеет место в угольных шахтах, в карьерах, в нефтедобывающей и химической промышленности, на цементных заводах и т.п. Расстояние от ТП до ЭП при этом увеличивается, и становится необходимым для снижения потерь ЭЭ принять повышенное напряжение распределительной сети 660 В;

— целесообразно на предприятиях с высокой удельной плотностью электрических нагрузок и большим числом электродвигателей в диапазоне мощностей 200–600 кВт;

— позволяет увеличить радиус действия цеховых ТП примерно в 2 раза;

— позволяет повысить единичную мощность трансформаторов, сократить число цеховых ТП, линий и аппаратов напряжением выше 1000 В;

— позволяет снизить в 2 раза расход цветных металлов;

— позволяет увеличить пропускную способность сети 660/380 В в 3 раз.

Недостатки напряжения 660 В:

— необходимость раздельного питания силовых и осветительных ЭП;

— повышенная степень опасности поражения электрическим током.

Напряжение до 42 В (24 В или 36 В) применяется в помещениях с повышенной опасностью для стационарного местного освещения и ручных переносных ламп.

Напряжение 12 В применяется только при особо неблагоприятных условиях в отношении опасности поражения электрическим током (например, при работе в котлах или других металлических резервуарах), для питания ручных переносных светильников.

В зависимости от установленной мощности промышленные предприятия подразделяются на предприятия:

— малой мощности (1–5 МВт);

— средней мощности (5–75 МВт);

— большой мощности (более 75 МВт).

Напряжения 6 и 10 кВ используются для питания предприятий малой мощности и во внутризаводских распределительных сетях. Напряжение 10 кВ является предпочтительным. Напряжение 6 кВ целесообразно тогда, когда нагрузки и ТП предприятия получают питание от шин генераторов собственной ТЭЦ, а также при наличии значительного числа ЭП на номинальное напряжение 6 кВ.

Напряжение 35 кВ используется:

— для создания центров питания предприятий средней мощности, если распределительные сети выполняются на напряжение 6–10 кВ;

— для электроснабжения крупных предприятий с удаленными (5–20 км) ЭП на это напряжение;

— в схемах глубокого ввода.

Напряжение 110 кВ находит сейчас все большее применение в качестве питающего напряжения на предприятиях средней мощности и в качестве распределительного по схеме глубокого ввода — большой мощности.

Напряжение 220 кВ применяется для питания крупных энергоемких предприятий от ТП районных энергосистем, а также для распределения ЭЭ на первой ступени схемы электроснабжения.

2 thoughts on “ Напряжения электрических сетей ”

abookz. net :

Так как приемники электроэнергии непосредственно под­ключены к сети определенного номинального напряжения, их номинальные напряжения одинаковы. Вместе с тем, в практике встречаются случаи несовпадения номинальных напряжений электроприемников и электрических сетей Например, лампы накаливания выпускаются на напряжение 230-240 В для рабо­

Читайте также:  Почему пульсирует напряжение генератора

Aleksandr :

Вы противоречите в двух предложениях сами себе. Номинальное напряжение сети и номинальное напряжение электроприемника, это разные вещи и они по определению не могут быть равны. Возможно Вы путаете номинальное напряжение и мгновенное значение напряжения.

Источник

Классификация электрических сетей

Электрические сети классифицируют по ряду показателей, характеризующих как сеть в целом, так и отдельные линии электропередачи (ЛЭП).

По роду тока

По току различают сети переменного и постоянного тока.

Трехфазный переменный ток 50 Гц имеет ряд преимуществ по сравнению с постоянным:

возможность трансформации с одного напряжения на другое в широких пределах;

возможность передачи больших мощностей на большие расстояния, что достигается. Это достигается трансформацией напряжения генераторов в более высокое напряжение для передачи электроэнергии по линии и обратной трансформацией высокого напряжения в низкое на приемном пункте. При таком способе передачи электроэнергии потери в линии уменьшаются, так как они зависят от тока в линии, а ток при одной и той же мощности тем меньше, чем выше напряжение;

при трехфазном переменном токе конструкция асинхронных электродвигателей проста и надежна (нет коллектора). Конструкция синхронного генератора переменного тока также проще генератора постоянного тока (отсутствует коллектор и др.);

Трансформаторная подстанция

Недостатками переменного тока являются:

необходимость выработки реактивной мощности, которая нужна в основном для создания магнитных полей трансформаторов и электродвигателей. На выработку реактивной энергии топливо (на ТЭС) и вода (на ГЭС) не затрачиваются, однако реактивный ток (ток намагничивания), протекая по линиям и обмоткам трансформаторов, бесполезно (в смысле использования линий для передачи активной энергии) перегружает их, вызывает потери активной мощности в них и лимитирует передаваемую активную мощность. Отношение реактивной мощности к активной характеризует коэффициент мощности установки (чем меньше коэффициент мощности, тем хуже используются электрические сети);

для повышения коэффициента мощности часто используют конденсаторные батареи или синхронные компенсаторы, что удорожает установки переменного тока;

передача очень больших мощностей на большие расстояния лимитируется устойчивостью параллельной работы энергосистем, между которыми осуществляется передача мощности.

К преимуществам постоянного тока следует отнести:

отсутствие реактивной составляющей тока (возможно полное использование линий);

удобное и плавное регулирование в больших пределах числа оборотов электродвигателей постоянного тока;

большой начальный вращаемый момент у сериесных двигателей, нашедших широкое применение в электротяге и кранах;

возможность электролиза и др.

Основными недостатками постоянного тока являются:

невозможность трансформации простыми средствами постоянного тока одного напряжения в другое;

невозможность создания генераторов постоянного тока высокого напряжения (ВН) для передачи мощности на сравнительно большие расстояния;

сложность получения постоянного тока ВН: для этой цели необходимо переменный ток ВН выпрямлять, а затем на месте приема инвертировать в трехфазный переменный. Основное применение получили сети трехфазного переменного тока. При большом количестве электроприемников однофазного тока от трехфазной сети делаются однофазные ответвления. Преимуществами трехфазной системы переменного тока являются:

применение трехфазной системы для создания вращающегося магнитного поля дает возможность выполнения простых электродвигателей;

в трехфазной системе потери мощности меньше, чем в одно- фазной. Доказательство этого положения приводится в табл.1.

Таблица 1. Сравнение трехфазной системы (трехпроводной) с однофазной (двухпроводной)

Сравнение трехфазной системы с однофазной

Как видно из таблицы (строки 5 и 6), dР1=2dР3 и dQ1=2dQ3, т.е. потери мощности в однофазной системе при тех же мощности S и напряжении U больше в два раза. Однако в однофазной системе два провода, а в трехфазной три.

Чтобы расход металла был тем же, нужно уменьшить сечение проводов трехфазной линии по сравнению с однофазной в 1,5 раза. Во столько же раз будет больше сопротивление, т.е. R3=1,5R1. Подставляя это значение в выражение для dР3, получим dР3 = (1,5S2/U2)R1, т.е. потери активной мощности в однофазной линии в 2/1,5=1,33 раза больше, чем в трехфазной.

Использование постянного тока

Сети постоянного тока сооружаются для питания промышленных предприятий (электролизных цехов, электрических печей и т. д.), городского электротранспорта (трамвая, троллейбуса, метрополитена). Подробнее об этом смотрите здесь: Где и как используется постоянный ток

Электрификация железнодорожного транспорта осуществляется как на постоянном, так и переменном токе.

Постоянный ток используют также для передачи энергии на большие расстояния, поскольку применение переменного тока для этой цели связано с трудностью обеспечения устойчивой параллельной работы генераторов электростанций. Однако па постоянном токе при этом работает лишь ЛЭП, на питающем конце которой переменный ток преобразуется в постоянный, а на приемном конце происходит инвертирование постоянного тока в переменный.

Постоянный ток может быть использован в электропередачах переменного тока для организации связи двух электрических систем в виде вставки постоянного тока – электропередачи постоянного тока нулевой длины, когда две электрические системы соединяются между собой через выпрямительно-преобразовательную установку. При этом отклонения частоты в каждой из электрических систем практически не отражаются на передаваемой мощности.

В настоящее время проводятся исследования и разработки электропередачи пульсирующего тока, в которой по общей ЛЭП энергия одновременно передается переменным и постоянным током. При этом предусматривается наложение на все три фазы ЛЭП переменного тока некоторого постоянного относительно земли напряжения, создаваемого с помощью преобразовательных установок на концах ЛЭП.

Читайте также:  Стабилизатор напряжения ресанта 10000вт установка

Такой способ передачи электроэнергии позволяет лучше использовать изоляцию ЛЭП и увеличивает ее пропускную способность по сравнению с передачей переменного тока, а также облегчает отбор мощности от ЛЭП по сравнению с передачей постоянного тока.

Электрические сети

По напряжению

По напряжению электрические сети делятся на сети напряжением до 1 кВ и выше 1 кВ.

Каждая электрическая сеть характеризуется номинальным напряжением, при котором обеспечивается нормальная и наиболее экономичная работа оборудования.

Различают номинальные напряжения генераторов, трансформаторов, сетей и электроприемников. Номинальное напряжение сети совпадает с номинальным напряжением электроприемников, а номинальное напряжение генератора по условиям компенсации потерь напряжения в сети принимается на 5 % выше номинального напряжения сети.

Номинальное напряжение трансформатора устанавливается для первичной и вторичной его обмоток при холостом ходе. В связи с тем, что первичная обмотка трансформатора является приемником электроэнергии, для повышающего трансформатора ее номинальное напряжение принимается равным номинальному напряжению генератора, а для понижающего – номинальному напряжению сети.

Напряжение вторичной обмотки трансформатора, питающей сеть, при нагрузке должно быть на 5 % выше номинального напряжения сети. Так как при нагрузке происходит потеря напряжения в самом трансформаторе, то номинальное напряжение (т. е. напряжение холостого хода) вторичной обмотки трансформатора принимается на 10 % выше номинального напряжения сети.

В табл. 2 приведены номинальные междуфазные напряжения электрических сетей трехфазного тока частотой 50 Гц. Электрические сети по напряжению условно делятся на сети низких (220–660 В), средних (6–35 кВ), высоких (110–220 кВ), сверхвысоких (330–750 кВ) и ультравысоких (1000 кВ и выше) напряжений.

Таблица 2. Стандартные напряжения, кВ, по ГОСТ 29322–92

Стандартные напряжения

На транспорте и в промышленности используются следующие напряжения постоянного тока: для контактной сети, питающей трамваи и троллейбусы – 600 В, вагоны метрополитена – 825 В, для электрифицированных железных дорог – 3300 и 1650 В, открытые горные разработки обслуживаются троллейвозами и электровозами, питающимися от контактной сети 600, 825, 1650 и 3300 В, подземный промышленный транспорт использует напряжение 275 В. Сети дуговых печей имеют напряжение 75 В, электролизных установок 220–850 В.

Опора ВЛЭП

По конструктивному исполнению и расположению

По конструктивному исполнению различают воздушные и кабельные сети, проводки и токопроводы.

По расположению сети делятся на наружные и внутренние.

Наружные сети выполняют голыми (неизолированными) проводами и кабелями (подземными, подводными), внутренние – кабелями, изолированными и голыми проводами, шинами.

По характеру потребления

По характеру потребления различают сети городские, промышленные, сельские, электрифицированных железных дорог, магистральных нефте- и газопроводов, электрических систем.

По назначению

Разнообразие и сложность электрических сетей обусловили отсутствие единой классификации и использование различных терминов при классификации сетей по назначению, роли и выполняемым функциям в схеме электроснабжения.

Э лектрические сети делятся на системообразующие и распределительные.

Системообразующей называется электрическая сеть, объединяющая электростанции и обеспечивающая их функционирование как единого объекта управления, одновременно осуществляя выдачу мощности электростанций. Распределительной называется электрическая сеть. обеспечивающая распределение электроэнергии от источника питания.

В ГОСТ 24291–90 электрические сети также делятся на системообразующие и распределительные. Кроме того, выделяются городские, промышленные и сельские сети.

Силовой трансформатор на подстанции

Назначением распределительных сетей является дальнейшее распределение электроэнергии от подстанция системообразующей сети (частично также от шин распределительного напряжения электростанций) до центральных пунктов городских, промышленных и сельских сетей.

Первой ступенью распределительных сетей общего пользования являются сети 330 (220) кВ, второй – 110 кВ, затем электроэнергия распределяется по сети электроснабжения отдельных потребителей.

По выполняемым функциям различаются системообразующие, питающие и распределительные сети.

Системообразующие сети 330 кВ и выше осуществляют функции формирования объединенных энергосистем.

Питающие сети предназначены для передачи электроэнергии от подстанций системообразующей сети и частично шин 110 (220) кВ электростанций к центральным пуктам распределительных сетей – районным подстанциям. Питающие сети обычно замкнуты. Ранее напряжения этих сетей было 110 (220) кВ, в последнее время напряжение электрических сетей, как правило, равно 330 кВ.

Распределительные сети предназначены для передачи электроэнергии на небольшие расстояния от шин низшего напряжения районных подстанций к городским промышленным и сельским потребителям. Такие распределительные сети обычно разомкнутые или работают в разомкнутом режиме. Ранее такие сети выполнялись на напряжении 35 кВ и ниже, а в настоящее время – 110 (220) кВ.

Электрические сети подразделяются также на местные и районные и, кроме того, на питающие и распределительные. К местным относят сети 35 кВ и ниже, к районным – 110 кВ и выше.

Питающей называется линия, идущая от центрального пункта к распределительному пункту или непосредственно к подстанциям, без распределения электроэнергии по ее длине.

Распределительной называется линия к которой вдоль длины присоединено несколько трансформаторных подстанций или вводов к электроустановкам потребителей.

По назначению в схеме электроснабжения сети также делятся на местные и районные.

К местным относятся сети с малой плотностью нагрузки и напряжением до 35 кВ включительно. Это городские, промышленные и сельские сети. К местным сетям причисляют также глубокие вводы 110 кВ небольшой протяженности.

Районные электрические сети охватывают большие территории и имеют напряжение 110 кВ и выше. По районным сетям электроэнергия передается от электростанций в места потребления, а также распределяется между районными и крупными промышленными и транспортными подстанциями, питающими местные сети.

Читайте также:  Встраиваемые стабилизатор напряжения для квартиры

К районным сетям относятся основные сети электрических систем, магистральные ЛЭП внутри- и межсистемной связи.

Основные сети обеспечивают связь электростанций между собой и с районными центрами потребления (районными подстанциями). Выполняются они по сложнозамкнутым многоконтурным схемам.

Магистральные ЛЭП внутрисистемной связи обеспечивают связь отдельно расположенных электростанций с основной сетью электрической системы, а также связь удаленных крупных потребителей с центральными пунктами. Обычно это ВЛ 110–330 кВ и выше большой протяженности.

По роли в схеме электроснабжения различаются сети питающие, распределительные и основные сети энергосистем.

Питающими называют сети, по которым энергия подводится к ПС и РП, распределительными – сети, к которым непосредственно присоединяются ЭП или ТП (обычно это сети до 10 кВ, однако часто к распределительным относят и разветвленные сети более высоких напряжений, если к ним присоединяется большое количество приемных ПС). К основным сетям относят сети наивысшего напряжения, на котором осуществляются наиболее мощные связи в электрической системе.

Источник

Классификация электрических сетей.

Электрические сети по классу напряжения ранжируются согласно следующим критериям:

Самая основная классификация это:

Классификация электрических сетей по напряжению.

Ультравысокое напряжение.

750 кВ и выше (1150 кВ, 1500 кВ). Линии монтируются на высоких, мощных арочных столбах, на каждой фазе используется три провода, расположенных треугольником. Количество изоляторов не менее 20, это нужно для снижения коронных разрядов и блокирования возможности возникновения электрической дуги.

Сверхвысокое напряжение.

750 кВ, 500 кВ, 330 кВ. Линии монтируются на высоких, мощных арочных столбах, на каждой фазе используется два провода. Количество изоляторов не менее 14, также с целью снижения коронных разрядов блокирования возможности возникновения электрической дуги.

Высокое напряжение (ВН).

220 кВ, 150 кВ, 110 кВ. В линиях передач исползуются столбы из материалов с повышенной прочностью на излом, между проводами инсталируется мощная изоляция, выполненная из 10-40 (2х20) изоляторов, закрепленных на траверсах. На напряжении 150 кВ используется 8 или 9 изоляторов, на напряжении 110 кВ — шесть. По всей длине ЛЭП подвешивают молниезащитные тросы.

Среднее первое напряжение (СН-1).

35 кВ. В таких линиях передач исползуются столбы из материалов с повышенной прочностью на излом, между проводами инсталируется мощная изоляция, выполненная из специальных изоляторов, закрепленных на траверсах. Молниезащитные стальные тросы подвешивают только на тех участках ЛЭП, где высока опасность грозы (например возвышенности).

Среднее второе напряжение (СН-2).

20 кВ, 10 кВ, 6 кВ, 1 кВ. Линии передачи электроэнергии для таких сетей размещают на одиночных столбах увеличенного (по сравнению с сетями до 20 кВ) размера. Также увеличивается размер изоляторов, и расстояние между кабелями.

Низкое напряжение (НН).

0,38 кВ, 0,22 кВ, 0,11 кВ и ниже. Конструктивно представляют из себя бытовую или промышленную проводку локального характера, либо линии электропередач на одиночных столбах, вкопанных в грунт. В таких линиях часто применяется неизолированный кабель для лэп, или даже кабель медный ввгнг, подвешенный на несущем тросе.

Также используются следующие классификации:

Классификация электрических сетей по выполняемым функциям.

  1. Общего электроснабжения (бытового, промышленнго, сельскохозяйственного назначения и использования на транспорте).
  2. Автономные (для электроснабжения мобильных и обособленных объектов, таких как, морские и речные суда, авиационные и космические аппараты, географически обособленные и стратегические объекты, в том числе промышленной и оборонной инфраструктуры, и т.д..).
  3. Промышленно-технологические (для промышленных объектов, в том числе объектов производств и других инженерных сетей).
  4. Контактные (передачи электрической энергии на железнодорожный, городской электрический и гибридный транспорт, и прочие транспортные средства, включая электропоезда, троллейбусы, трамваи).

Классификация электрических сетей по масштабным признакам и размеру сети.

  1. Магистральные (связь центров потребления масштаба региона, для таких сетей характерен высокий и сверхвысокий уровень напряжения, большие потоки мощности).
  2. Региональными (распределение электроэнергии от магистральных сетей с целью электрификации крупных потребителей масштаба города, района, поселка городского типа, для таких сетей характерно среднее и высокое напряжение, но при этом столь же большие потоки мощности, как у магистральных сетей).
  3. Районными (распределение электроэнергии от региональных сетей, автономных источников питания обычно не имеют, предназначены для электрификации малых и средних объектов-потребителей, для таких сетей характерно низкое и среднее напряжение, с незначительным мощностным потоком);
  4. Внутренними (распределение электроэнергии внутри небольших локаций, масштабов малого населенного пункта, или городского округа, района крупного города, иногда имеют оснащены резервным источником питания, для таких сетей характерны низкие уровни напряжения).
  5. Сетями электрической проводки, или сети самого нижнего уровня (электрификация отдельных зданий, цехов или помещений, для таких сетей характерны малые потоки мощности на низком (бытовом) уровне напряжения).
Магистральные сети Региональные сети Районные сети
Внутренние сети Сети электрической проводки

Классификация электрических сетей по роду тока.

C переменным трехфазным током:

Переменный трехфазный ток

Передача тока осуществляется по трем проводникам со смещением фазы переменного тока в каждом из них на 120 град. относительно других.;

C переменным однофазным током:

Переменный однофазный ток

Электроэнергия передается по двум проводникам через электропроводку бытового типа от подстанции или распределительного щита;

C постоянным током:

Постоянный ток

Для узкоспециализированных сетей (автономное электроснабжение, ряд специальных сетей сверхвысокого напряжения);

Источник