Меню

Стабилизаторы напряжения регулируемый выход



Стабилизаторы напряжения регулируемый выход

Микросхемы (далее ИМС) линейных стабилизаторов напряжения очень удобны для применения в различных схемотехнических проектах, не требующих высоких КПД и больших мощностей. При использовании правильных схемотехнических решений, они обеспечивают более высокую надёжность (за счёт меньшего числа компонентов, даже с учётом интегральных) и меньший уровень шумов, кроме того такие источники питания проще в проектировании и реализации. Дополнительным плюсом также являтся то, что многие ИМС стабилизаторов обеспечивают встроенную защиту от перенапряжения, от превышения тока и от переполюсовки входного напряжения — всё это позволяет в большинстве случаев обойтись без дополнительных элементов в схеме.

Из недостатков данных решений следует отметить два основных:

  • Низкий КПД — «лишнее» напряжение такие схемы фактически сбрасывают в тепло, что, соответственно, в большинстве случаев требует применения дополнительного охлаждения.
  • Необходимость положительной разницы напряжений между входом и выходом — даже самые лучшие модели линейных стабилизаторов имеют падение напряжения около 0.4В, а большинство перестаёт работать уже при разнице 0.5В.

Несмотря на все недостатки, такие схемы часто вполне уместно использовать в своих проектах. В данной статье пойдёт речь о различных схемотехнических особенностях применения данных микросхем.

Стабилизаторы с фиксированным напряжением

Интегральные линейные стабилизаторы могут иметь фиксированное выходное напряжение, либо же иметь возможность выбора выходного напряжения. Начнём с рассмотрения базовых схем включения большинства фиксированных интегральных стабилиазторов напряжения:

Схема включения стабилиазторов напряжения с фиксированным выходным напряжением

Конденсатор C1 рекомендуется ставить для предотвращения возникновения «генерации на входе», если микросхема стабилизатора находится дальше 10 см от источника напряжения — по сути это просто фильтрующий конденсатор. Мы в своих проектах ставим на вход конденсатор в любом случае. Рекомендуется использовать керамику или тантал, ёмкостью не менее 0.1 мкФ. При выборе номинала ёмкости керамики помните, что при повышении температуры у большинства керамических кондёров сильно падает ёмкость.

Назначение конденсатора C2 различается в зависимости от внутренней схемы стабилизатора. Например в микросхемах серии КР1158ЕН, данный элемент обеспечивает отсутствие возбуждения выходного напряжения. А производитель LM317 отмечает, что выходной конденсатор служит лишь для улучшения переходной характеристики и на стабильность не влияет. Так или иначе, при использовании конденсатора малой ёмкости (1-2 мкФ) на выходе многих линейных стабилизаторов наблюдаются небольшие колебания выходного напряжения с частотой несколько кГц и амплитудой порядка 0.2-0.4 вольт. Увеличение выходного конденсатора до 10 мкФ полностью данные колебания убирает.

Оба конденсатора необходимо размещать как можно ближе к корпусу микросхемы.

Диод Д1 ставить не обязательно, в большинстве типовых схем его не используют, но если вы используете конденсатор C2 или выходные напряжения превышают 25 В, диод Д1 рекомендуется всё-таки оставлять, поэтому я оставил его на схемах. Также, данный диод рекомендуется использовать если нагрузка носит индуктивный характер. Он обеспечивает путь для разрядки C2, а в случае индуктивной нагрузки ограничивает броски тока через стабилизатор.

Стабилизаторы с регулируемым напряжением

В схемах с регулируемым выходным напряжением добавляются дополнительные элементы:

Схема включения стабилизаторов напряжения с регулируемым выходным напряжением

Конденсатор C3 уменьшает пульсации выходного напряжения. Рекомендуемый номинал C3 — от 1 до 10 мкФ, большее значение ёмкости значимых улучшений не даёт.

Диод Д2 нужен при использовании C3 — он обеспечивает его разрядку при выключении питания. При отсутствии C3 достаточно диода Д1.

Резисторы R1 и R2 используются для задания выходного напряжения. Регулируемый стабилизатор стремится поддерживать опорное напряжение (Vref) между выводом подстройки и выходом. Поскольку значение опорного напряжения является постоянным, величина тока, протекающего через делитель R1 и R2 определяется только резистором R2. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1.2 до 1.3 В, и в среднем составляет 1.25 В. Напряжение на выходе фактически является суммой падения напряжения на R1 и Vref, т.о., чем больше будет падение напряжения на R1, тем больше будет напряжения на выходе.

Читайте также:  Измерение напряжения цифровым вольтметром не возникает такая составляющая погрешности измерения как

Рекомендуемый номинал резистора R2 240 Ом, но допустимо его варьировать в пределах 100-1000 Ом. Выходное напряжение рассчитывается по следующей формуле:

Согласно спецификации значение Iadj лежит в диапазоне 50-100 мкА, поэтому при малых R1 им можно пренебречь.

Повышение напряжения стабилизации регуляторов с фиксированным выходным напряжением

Выходное напряжение фиксированных линейных регуляторов можно повысить, включив в цепь подстройки стабилитрон:

Схема повышения напряжения стабилизации регуляторов с фиксированным выходным напряжением

В этой схеме выходное напряжение повысится на величину напряжения стабилизации Vстаб стабилитрона Д2. Резистор R служит для установки тока через стабилитрон и выбирается исходя из параметров стабилитрона. Для большинства стабилитронов подходит R = 200 Ом.

Если поднять напряжение нужно на небольшую величину (0.5 — 1.5 В) вместо стабилитрона Д2 можно использовать практически любой диод в прямом включении (катод на землю). Тогда выходное напряжение будет увеличено на величину падения напряжения на диоде, а резистор R нужно исключить, потому что колебания тока из вывода подстройки невелики и падение напряжения на диоде будет практически постоянным.

Ограничитель тока на линейном стабилизаторе

На микросхемах линейных стабилизаторов типа LM317 (и аналогичных) удобно собирать схему ограничителя тока, для этого требуется всего один дополнительный резистор.

Ограничитель тока на линейном стабилизаторе

Выходное напряжение зависит от входного напряжение и падения напряжения на стабилизаторе. В данной схеме регулируемые стабилизаторы стремятся поддерживать на выходе напряжение Vref

1.25В, поэтому выходной ток определяется соотношением:

Для ИМС с фиксированным напряжением Vref заменяется на Vном., и ток через резистор получается слишком большим (как если бы микросхемы не было), поэтому применение стабилизаторов с фиксированным напряжением в данной схеме нецелесообразно.

Рассеиваемая резистором мощность вычисляется по формуле:

Данная схема будет работать также на всей серии LM340 и аналогичных ИМС.

Увеличение максимального тока ИМС линейных регуляторов

Есть способ увеличить максимальный ток линейного линейного стабилизатора тока.

Схема увеличения максимального тока линейного токового стабилизатора

В данной схеме R1 определяет напряжение открытия транзистора T1:

Здесь Vоткр. — напряжение открытия T1, а Iстаб.max максимальный ток протекающий через стабилизатор (ток, при котором откроется T1). Рекомендуется выбирать Iстаб.max меньше максимального тока микросхемы по спецификации, чтобы был некоторый запас.

Микросхема поддерживает падение напряжения между выходом и выводом подстройки и в случае превышения тока через R2 уменьшает ток через себя, что вызывает уменьшение падения напряжения на R1 и последующее закрытие транзистора. Таким образом, максимальный выходной ток определяется резистором R2 и опорным напряжением микросхемы:

Следует помнить, что при быстрых бросках тока T1 может не успеть закрыться, что вызовет повреждения элементов, поэтому следует использовать дополнительные компоненты для защиты транзистора (здесь не показаны).

Повысить ток можно и для стабилизатора напряжения, включив его по аналогичной схеме (но без R2), однако следует помнить, что в этом случае схема лишится автоматического ограничения по току и превышение максимального значения повлечёт за собой повреждение элементов.

Стабилизатор с плавным нарастанием выходного напряжения

Схема стабилизатора с плавным нарастанием выходного напряжения

При включении питания напряжение на конденсаторе C2 начинает возрастать, вместе с ним возрастает и выходное напряжение. PNP транзистор выключается когда выходное напряжение достигает значения, определяемого резисторами R1 и R2 (как в обычной схеме регулируемого стабилизатора). Начальное выходное напряжение складывается из начального напряжения на конденсаторе, падения на база-эммитерном переходе и опорного напряжения микросхемы. Скорость нарастания напряжения можно регулировать изменяя номиналы R3 и C2.

Управляемый стабилизатор напряжения с дискретными уровнями выходного напряжения

На регулируемом стабилизаторе можно собрать простой управляемый стабилизатор напряжения, добавивь несколько резисторов и транзисторов. Данное решение удобно, если требуется собрать простой регулируемый стабилизатор с несколькими фиксированными уровнями напряжения.

Управляемый стабилизатор напряжения

Резистор R2 рассчитывается на максимальное требуемое напряжение. Включение транзистора будет добавлять в параллель к проводимости резистора R2 дополнительную проводимость и напряжение на выходе будет снижаться. Не забывайте подтягивать базы транзисторов через высокоомные резисторы к питанию, либо к земле (в зависимости о того закрыт или открыт должен быть транзистор без управляющего сигнала).

Читайте также:  Карманный детектор напряжения voltalert 1ac d

Конденсатор C2 в данной схеме допустимо не использовать, так как транзисторы обладают некоторой собственной ёмкостью.

Источник

Регулируемый стабилизатор напряжения с регулируемым ограничением выходного тока

Схема

Устройство разрабатывалось для выходного напряжения 1. 12V и регулирования выходного тока в пределах 0,15. 3А. Конечно для хороших результатов поставил транзисторы с усилением более 500 (сняты с платы МЦ-31 телевизора 3усцт), а составной регулирующий – около 10 000 (если измеритель не врёт – взял из модуля СКР телевизора 2усцт, коррекция растра).
Важно наверно, что питал схему от автомобильного аккумулятора, когда снимал данные.
Далее поставил трансформатор и некоторые чудеса, типа 3А при 12V, стали невозможными. Падало напряжение на выходе выпрямителя. Кому ещё интересно – ближе к схеме.

Схема стабилизатора напряжения с регулируемым ограничением выходного тока

Итак, на Х1 подаётся минус источникa напряжения, а с Х2 берётся стабилизированное и ограниченное в выходном токе напряжение. Если вкратце, то VТ3 – регулирующий, VТ4 – компаратор и усилитель сигнала ошибки стабилизатора напряжения, VТ1 — компаратор и усилитель сигнала ошибки стабилизатора выходного тока, VТ2 — датчик наличия ограничения выходного тока. За основу был взят распространённый вариант стабилизатора напряжения.

Исходная схема с фиксированным напряжением и защитой по току

Она слегка изменена, чтобы можно было менять в возможно бОльших пределах выходное напряжение, и убрать блокирование стабилизатора. Добавлен R8, чтобы сделать возможным работу схемы ограничения выходного тока на VТ1. Добавлен R7 и VD3 для установки пределов изменения выходного напряжения. Конденсаторы С1 и С2 помогут уменьшить пульсации на выходе.

Теперь позвольте мне пройтись с объяснениями по второму кругу (cм. первую схему). При появлении на входе Х1 относительно общего провода отрицательного постоянного напряжения в пределах 9. 15V, появится ток в цепи R2-VD2-R6-VD1. На стабилитроне VD1 появится стабильное напряжение. Часть этого напряжения подаётся на базу VТ4, который в результате откроется. Его ток коллектора откроет VТ3. Ток коллектора VТ3 зарядит С2, а через делитель R9, R10 часть напряжения С2 (оно же выходное) поступит на эмитер VТ4. Этот факт не позволит выходному напряжению расти больше чем удвоенное (Uбазы VT4 — 0,6V). Удвоенное потому, что делитель R9, R10 на два. Так как на базе VT4 напряжение стабильно, выходное тоже будет стабильным. Это есть рабочий режим. Транзисторы VТ1, VТ2 закрыты и никак не влияют.

Подсоединим нагрузку. Появится ток нагрузки. Он потечёт по цепи R2, Э-К VТ3 и дальше в нагрузку. R2 здесь работает датчиком тока. Пропорционально току на нём появляется напряжение. Это напряжение суммируется с частью напряжения, взятого с помощью R5 от VD2 и прилагается к базовому переходу VТ1 (R3 – чисто для ограничения тока базы VТ1 при бросках и защиты таким образом VТ1) и когда оно становится достаточным для открытия VТ1, устройство входит в режим ограничения выходного тока. Часть тока коллектора VТ4, который раньше поступал в базу VТ3, сейчас уходит через переход база-эмитер VТ2 в коллектор VТ1.
Благодаря большому коэффициенту усиления транзисторов, напряжение база-эмитер VТ1 будет поддерживаться около 0,6V. Это значит, что напряжение на R2 будет неизменным, следовательно и ток через него, а дальше через нагрузку тоже. Движком R5 можно выбирать ограничение тока от минимального до почти 3А.
При наличии режима ограничении тока открыт и VТ2, своим током коллектора он зажжёт светодиод HL1. Следует понимать, что ограничение тока «имеет приоритет» перед «стабильностью» выходного напряжения.

Читайте также:  Напряжение аккумулятора без нагрузки ваз

На выходе устройства я поставил вольтметр, а вот когда нужно ограничение на определённом токе, просто закорачиваю выход тестером в режиме амперметра и с помощью R5 добиваюсь желаемого.

Детали

Схемка простинькая но всё хорошее основано на большом усилении транзисторов (более 500). А VТ3 вообще составной. Букв на названиях транзисторов нет, но должны все подойти. У меня все «Г». Главное – усиление и малые утечки. В справочнике пишут, что у некоторых букв «Ку» от 200, но мои все имели более 600. Переменники попались группы А. Для VТ3 нужен радиатор. Я поставил какой был и влез в корпус. Максимальную надежность обеспечит лишь радиатор, расчитанный на рассеивание мощности равной Uвходное умножить на 3А, т.е. 30. 50Вт.
Думаю мало кому понадобится 1V на 3А долговременно, поэтому смело можно ставить радиатор в 2. 3 раза меньше.

VD2 и VD3 служат источниками напряжения в 0,6V. Можно использовать и другие кремниевые диоды. R4 – несколько сдвигает порог, когда загорается светодиод. Если он горит, значит вовсю идет ограничение выходного тока. R1 просто ограничивает ток светодиода. Потенциометры можно и с большим номиналом (в 2. 3 раза). R8 можно уменьшить (где-то до 4к), если у транзистора VТ3 не хватит усиления.

С печатной платой – как обычно в простых схемах, изготавливаемых в единственном экземпляре. Была плата для другого регулируемого стабилизатора напряжения, параметры которого не устраивали. Она была превращена в макетницу и на ней собрана данная схема. Резисторы использованы на 0,25 Вт (можно и 0,125) – не вижу особых требований. При 3А (если Ваш выпрямитель их даст) – заводской проволочный R2 (2 Вт-а) будет на пределе и наверно стоит ставить мощнее (5Вт). Электролиты — К50-16 на 16V.

Eсли нет составного транзистора – «составьте» его из чего есть. Начните с КТ817 + КТ315, с буквами «Б» и дальше. (Если всё же не хватит усиления у VТ3, я бы уменьшил R9 и R10 до 200 Ом и R8 до 2 кОм).

Трансформатор, выпрямитель и конденсатор фильтра – Ваши. Они не менее важны, но я хотел рассказать только о таком более-менее универсальном стабилизаторе. (У меня стоит 10-ватный транс на 10V/1А переменного, откуда-то взятый блочный мостик на 1А, и 4000мкФ/16V электролит фильтра. Стыдно, зато всё влезает в корпус.

Нужно заметить, что стрелочный индикатор (в схеме не указан) с помощию переключателя, можно использовать и как вольтметр и как амперметр. В первом случае видим выходное напряжение, во втором выходной ток.

Итого

Вышерасписанное устройство у меня работает в составе «всё в одном»: развитый (хоть и однополярный) блок питания, частотомер и генератор звуковых частот (синус, квадрат, треугольник). Схемы взяты из журнала «Радио». (Работают не совсем так как хотелось бы. Во-первых потому, что внёс слишком много «несанкционированных» изменений – особенно в элементной базе – поставил что имел.) Конечно имеется возможность работы головки вольтметра в качестве индикатора частоты в частотомере. При пользовании генератором – частотомер показывает частоту. Имеется и выход переменного напряжения 6,3V и 10V , на всякий случай.

Корпус, который виден на фотографии не ахти, чтобы его повторять. И вообще: всё там задумывалось, как зеркальное отражение, но загнул переднюю панель по ошибке не в ту сторону. Я растроился и не стал уже его никак украшать.

Файлы

Виктор Бабешко повторил конструкцию, прислал свой вариант печатки и фотку.
Файл в LayOut:

Источник