Меню

Стабилизатор выпрямитель что это



Лекция 17. Выпрямители И СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА

date image2015-02-27
views image6865

facebook icon vkontakte icon twitter icon odnoklasniki icon

Виды выпрямителей и их характеристики. Выпрямителем называется устройство для преобразования пере­менного напряжения в постоянное [1,2,3,5,9,10,12,13,14]. Основное назначение выпрями­теля заключается в сохранении направления тока в нагрузке при изменении полярности приложенного напряжения. Выпрямитель можно рассматривать как один из типов инверторов напряжения. Обоб-щенная структурная схема выпрямителя приведена на рис.17.1. В состав выпрямителя могут входить: силовой трансформатор СТ, вентильный блок ВБ, фильтрующее устройство ФУ и стабили­затор напряжения СН. Трансформатор СТ выполняет следующие фун­к­ции: преобразует значение напряжения сети, обеспечивает гальваническую изоляцию нагрузки от силовой сети, преобразует количество

Рис.17.1. Обобщенная структурная схема выпрямителя

фаз силовой сети. В импульсных источниках питания трансформатор обычно отсутствует, так как его функции выпол­няет высокочастотный инвертор.

Вентильный блок ВБ является основным звеном выпрямителя, обеспечивая однонаправленное протекание тока в нагрузке. В каче­стве вентилей могут использоваться электровакуумные, газораз­рядные или полупроводниковые приборы, обладающие односто­ронней электропроводностью, например, диоды, тиристоры, тран­зисторы и др. Идеальные вентильные элементы должны пропускать ток только в одном (прямом) направлении и совсем не пропускать его в другом (обратном) направлении. Реальные вентильные эле­менты отличаются от идеальных прежде всего тем, что они пропус­кают некоторый ток в обратном направлении и имеют падение на­пряжения при протекании прямого тока. Это сказывается на сни­жении КПД вентильного блока и снижении эффективности выпря­мителя в целом.

Фильтрующее устройство ФУ используется для ослабления пульсаций выходного напряжения. В качестве фильтрующего уст­ройства обычно используются фильтры нижних частот (ФНЧ), вы­полненные на пассивных R, L, С элементах или, иногда, с примене­нием активных элементов — транзисторов, операционных усилите­лей и пр. Качество ФУ оценивают по его способности увеличивать коэффициент фильтрации q, равный отношению коэффициентов пульсации на входе и выходе фильтра.

Стабилизатор напряжения СН предназначен для уменьшения влияния внешних воздействий: изменения напряжения питающей сети, температуры окружающей среды, изменения нагрузки и др., — на выходное напряжение выпрямителя. Стабилизатор напряже­ния можно установить не только на выходе выпрямителя, но и на его входе. Если к стабильности выходного напряжения не предъяв­ляется особых требований, то стабилизатор может быть или совсем исключен или его функции переданы другим узлам. Например, в импульсных источниках питания функции стабилизатора может выполнять регулируемый инвертор (РИ) или регулируемый вен­тильный блок.

Кроме основных узлов в состав выпрямителя могут входить различные вспомогательные элементы и узлы, предназначенные для повышения его надежности: узлы контроля и автоматики, узлы защиты и др., например, узлы автоматического переключения на­пряжения питающей сети 110-220 В.

Классификация выпрямителей. Для классификации выпря­мителей используют различные признаки: количество выпрямлен­ных полуволн (полупериодов) напряжения, число фаз силовой сети, схему вентильного блока, тип сглаживающего фильтра, наличие трансформатора и др.

По количеству выпрямленных полуволн различают однополу­периодные и двухполупериодные выпрямители. По числу фаз пи­тающего напряжения различают однофазные, двухфазные, трех­фазные и шестифазные выпрямители. При этом под числом фаз пи­тающего напряжения понимают число питающих напряжений с от­личными друг от друга начальными фазами. Так, например, если для работы выпрямителя требуется одно-единственное питающее напряжение, то такой выпрямитель будет однофазным. Если же для работы выпрямителя требуются два питающих напряжения, сдви­нутых друг относительно друга на какой-либо угол (чаще всего на 180°), то такой выпрямитель называют двухфазным. Аналогично, если для работы выпрямителя требуются три питающих напряже­ния, сдвинутые друг относительно друга на угол, равный 120°, то такой выпрямитель называют трехфазным. Шестифазные выпрями­тели состоят из двух групп трехфазных выпрямителей, питаемых противофазными напряжениями трехфазной сети.

По схеме вентильного блока различают выпрямители с парал­лельным, последовательным и мостовым включением однофазных выпрямителей. Схемы таких выпрямителей приведены на рис.17.2.

Однофазный однополупериодный выпрямитель, схема кото­рого приведена на рис.17.2,a, является простейшим.

Такой выпрямитель пропускает на выход только одну полу­волну питающего напряжения, как показано на рис.17.3а. Такие выпрямители находят ограниченное применение в маломощных устройствах, так как они характеризуются плохим использованием трансформатора и сглаживающего фильтра.

Двухфазный двухполупериодный выпрямитель, приведенный на рис.17.2,б, представляет собой параллельное соединение двух одно-

фазных выпрямителей, питаемых от двух половин вторичной обмотки и . С помощью этих полуобмоток создаются два противофаз-

ных питающих выпрямитель напряжения. Форма вы­ходного напряжения такого выпрямителя приведена на рис.17.3,б. Этот выпрямитель характеризуется лучшим использованием трансформатора и фильтра. Его часто называют выпрямителем со средней точкой вторичной обмотки трансформатора.

Рис.17.3. Формы напряжений на входе и выходе выпрямителей, питае­мых от однофазной сети, при резистивной нагрузке без фильтра: однополу­период­ного (а) и двухполупериодного (б)

Однофазный мостовой выпрямитель (рис.17.2,в) является двухполупериодным выпрямителем, питаемым от однофазной сети. В отличие от предыдущей схемы его можно использовать для вы­пря­м­ле­ния напряжения сети и без трансформатора. К его недостат­кам относится удвоенное число выпрямительных диодов, однако трансформа-тор в таком выпрямителе используется наиболее полно, так как нет под­магничивания магнитопровода постоянным током, и ток во вторичной обмотке протекает в течение обоих полуперио­дов. Из-за увеличенного падения напряжения на выпрямительных диодах такие выпрямители редко используются при выпрямлении низких напряжений (меньше 5 В).

Однофазный выпрямитель с удвоением напряжения (рис.17.2,г) представляет собой последовательное соединение двух однофаз­ных однополупериодных выпрямителей. В первом полупериоде при положительном напряжении на аноде диода VD1 заряжается конденсатор , а во втором полупериоде проводит диод VD2 и кон­денсатор заряжается напряжением противоположной полярно­сти. Так как эти конденсаторы включены последовательно, то выходное напряжение почти удваивается. Конденсаторы и могут использоваться как элементы фильтра. Трансформатор в этой схеме используется так же полно, как и в мостовой. Эту схему можно получить из мостовой схемы, изображенной на рис.17.2,в, если заменить диоды VD3 и VD4 конденсаторами и . В связи с этим такой выпрямитель часто называют полумостовым. К досто­инствам схемы можно отнести уменьшение вдвое выходного на­пряжения трансформатора, а к недостаткам наличие двух конденса­торов и .

Схемы трехфазных выпрямителей, получивших наиболее широкое распространение в ИВЭП, приведены на рис.17.4. Пер­вичные обмотки трансформаторов Тр могут включаться по схеме звезды или треугольника, а вторичные обмотки включены по схеме звезды. На рис.17.4,а приведена схема трехфазного выпрямителя с отводом от нулевой точки 0′ вторичных обмоток. На рис.17.5,а при­ведены временные диаграммы напряжений и токов для этой схемы при резистив­ной нагрузке без фильтра. Коэффициент пульсаций выпрямленного напряжения составляет , в то время как для двухполу­пе­­риодного однофазного выпрямителя он составляет 67%, при этом частота пульсаций в три раза выше частоты питаю­щей сети.

Рис.17.4. Схема трехфазного выпрямителя с отводом от нулевой точки (а)

и мостового трехфазного выпрямителя (б)

Все это значительно облегчает фильтрацию выпрямленного напряжения, а в ряде случаев позволяет вообще обойтись без фильтра.

К недостаткам схемы относится плохое использо­вание трансформатора, работающий с подмагничиванием по­стоянным током, и повышенное обратное напряжение на выпрями­тельных диодах.

Мостовая схема трехфазного выпрямителя (схема Ларио­нова) приведена на рис.17.4,б. В этой схеме включены 6 диодов, которые выпрямляют как положительные, так и отрицательные по­луволны трехфазного напряжения. При этом в любой произволь­ный момент времени ток проводят два диода, у которых на аноде наибольшее по-

ложительное напряжение, а на катоде — наибольшее отрицательное. Графики токов и напряжений для трехфазной мос­товой схемы приведены на рис.17.5,б. К достоинствам схемы Ларионова относятся: отсутствие под­магничивания сердечника трансформатора постоянным током, вдвое меньшее (по сравнению с предыдущей схемой) обратное напряжение, малый коэффициент пульсаций (равный 5,7%) и вдвое увеличенная частота пульсаций . Все это позволяет во многих случаях не использовать вы­ходной фильтр.

Рис.17.5. Формы напряжений и токов в трехфазном выпрямителе с нуле-

вой точкой (а) и в трехфазном мостовом выпрямителе (б)

Для сравнения рассмотренных схем выпрямителей в табл.17.1 при­ведены их основные параметры при работе на резистивную на­г­рузку без фильтра. В этой таблице приняты следующие обозначения основных характеристик: — коэффициент транс-

фор­­­мации, -действующее значение напряжения на первич­ной обмотке, — действующее значение напряжения на вто­ричной обмотке, w1 и w2 — число витков первичной и вторич­ной обмоток соответственно, — расчетное значе­ние напряжения на нагрузке, — чис­ло последовательно включен­ных диодов, — среднее

Читайте также:  Яйца стойки стабилизатора приора

Источник

Отличия выпрямителя и стабилизатора

В связи с ростом энергопотребления домохозяйств подстанции не редко приходится модернизировать. В ином случае качество энергоснабжения заметно снижается. Решением проблемы может стать установка стабилизатора или выпрямителя напряжения.

Под выпрямителем тока понимается полупроводниковое, механическое, электровакуумное устройство. Большинство таких приборов создают «пульсирующий» ток. Их основные преимущества заключаются в следующем:

  • незначительные пульсации напряжения, неразрывная форма выходного тока;
  • высокий КПД во всем регулировочном диапазоне;
  • эффективное воздушное охлаждение;
  • герметичность конструкции обеспечивает защиту от проникновения внутрь агрессивных сред;
  • современные модели имеют промышленный интерфейс для управления с пульта или компьютера при различной удаленности;
  • возможность задать автоматический режим работы;
  • модульная конструкция выпрямителей высокой мощности позволяет работать при неисправности одного силового модуля;
  • оптимальные массогабаритные параметры;
  • возможность использования в качестве устройства выпрямления одно- и трехфазного тока.

Представленные в продаже выпрямители тока просты в обслуживании и отличаются высокой степенью ремонтопригодности. Для них характерен высокой энергетический фактор, то есть небольшое реактивное энергопотребление (за исключением тиристорных моделей).

Стабилизаторы напряжения – уникальная техника для автоматической регулировки сетевых параметров на прикрепленных зажимах с заранее установленными пределами. Основное отличие стабилизаторов от выпрямителей заключается в принципе их действия. Например, в стабилизирующих устройствах параметрического типа в основу положено использование свойств нелинейных элементов: карборундовых резисторов, насыщенных дросселей, нелинейных конденсаторов.

Стабилизаторы компенсационного типа работают за счет воздействия колебаний выходного напряжения через цепочку обратной связи на регулирующий элемент. Как правило, это замкнутые системы автоматической регулировки, поэтому их иногда именуют регуляторами напряжения. Через регулирующий орган ток проходит импульсно или непрерывно.

Преимущества стабилизаторов напряжения:

  • многофункциональность в отличие от выпрямителей. Современные модели стабилизаторов не только регулируют напряжение, но и могут включать задержку его подачи;
  • возможность сетевого мониторинга посредством вольтметров встроенного типа;
  • наличие дополнительной защиты от замыканий в подключенной сети и перенапряжений с внешней стороны;
  • позволяют владельцу быть в курсе происходящего с электросетью.

Источник

Выпрямители (Часть 1). Виды и устройство. Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Устройство и структура выпрямителя

Vypriamiteli osnovnaia skhema

Рис. 1

Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:

1 — Силовой трансформатор.
2 — Диодный мост, состоящий из диодов.
3 — Устройство фильтрования.
4 — Нагрузочная цепь со стабилизатором.

Vypriamiteli struktura

Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iн одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.

Читайте также:  Стойка стабилизатора поперечной устойчивости фольксваген поло

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.

По мощности на выходе:
  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.
По фазности сети питания:
  • 1-фазные.
  • 3-фазные.
По количеству импульсов одного полюса выпрямленного напряжения U2 за один период:
  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).
По типу управления вентилями выпрямители делятся на:
  • Управляемые. В схеме применяются транзисторы, тиристоры.
  • Неуправляемые. Используются диоды.
Выпрямители разделяют для следующих видов нагрузки:
  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.
Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:
  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.
  • КПД.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Formula

Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1 — рабочая первичная величина тока и напряжения, I2, U2 – рабочая величина вторичного тока и напряжения.

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Схемы выпрямления
Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Vypriamiteli odnofaznaia odnotaktnaia skhema

Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Источник