Меню

Стабилизатор вращения двигателя проигрывателя



Стабилизатор частоты вращения коллекторного двигателя

Стабилизатор частоты вращения коллекторного двигателя

Предлагаемый стабилизатор частоты вращения предназначен для работы с коллекторными двигателями и представляет собой полностью аналоговое устройство. Стабилизатор имеет обратную связь по частоте вращения, в то же время он не требует установки никакого тахогенератора.

Наиболее распространенным типом стабилизаторов частоты вращения ведущего двигателя кассетных магнитофонов является регулятор с положительной обратной связью по току [1]. Регулирование происходит параметрически, поэтому частота довольно сильно меняется при изменении нагрузки на валу двигателя. Для повышения качества работы стабилизатора необходимо ввести обратную связь по частоте вращения. Обычно при этом на вал двигателя устанавливается специальный датчик, чаще всего оптический [2]. Такой датчик включает в себя оптопару, световой поток которой прерывается крыльчаткой (или диском с отверстиями), которая насаживается на вал двигателя. Крыльчатка прерывает световой поток, и на выходе оптопары формируются импульсы с частотой вращения двигателя, умноженной на количество прорезей в крыльчатке. Иногда применяется и другой вид датчиков — магнитный. Тогда на вал двигателя устанавливается шестеренка из ферромагнитного материала, рядом с которой крепится магнитная головка. При вращении шестеренки на выводах головки появляется переменное напряжение с амплитудой около милливильта и частотой, равной частоте вращения двигателя, умноженной на количество зубъев на шестеренке. Однако, при доработке готового ЛПМ часто бывает трудно найти место для установки какого-либо датчика. Но это и не обязательно. Дело в том, что информацию о частоте вращения коллекторного двигателя можно извлечь из потребляемого им тока. Этот ток содержит переменную составляющую, первая гармоника которой имеет частоту, равную частоте вращения двигателя, умноженную на число пластин коллектора. Двигатели, которые чаще всего применяются в магнитофонах, имеют три пластины коллектора. Поэтому эта частота равна утроенной частоте вращения двигателя. Именно на этом принципе и построен описываемый регулятор.

Рис. 1. Принципиальная схема стабилизатора частоты вращения.

Для получения сигнала обратной связи в цепь питания двигателя включен датчик тока R1 (рис. 1). Ток, потребляемый двигателем, создает на этом резисторе падение, которое имеет переменную составляющую около 100 мВ peak-to-peak (рис.2, график 1). Основная гармоника выделяется с помощью простейшего ФНЧ R2C1 и через разделительный конденсатор C2 поступает на вход усилителя, собранного на ОУ U1A. Коэффициент усиления задан резисторами R4R5 так, чтобы усилитель работал в режиме ограничения. На его выходе формируетя практически прямоугольный сигнал с частотой, равной утроенной частоте вращения двигателя (рис. 2, график 2). Этот сигнал дифференцируется с помощью цепочки C3R6R7R8 (рис. 2, график 3). Отрицательный выброс ограничивается диодом VD1. Далее сигнал поступает на компаратор, в роли которого использован ОУ U1B. Опорное напряжение задается с помощью делителя R9R10. На выходе компаратора формируются прямоугольные импульсы постоянной длительности (рис. 2, график 4). Постоянная составляющая такой импульсной последовательности пропорциональна частоте следования импульсов, т.е. частоте вращения двигателя. Импульсная последовательность интегрируется с помощью цепочек R11R12C5 и R13C6. Постоянное напряжение, пропорциональное частоте вращения, поступает на пропорционально-интегрирующий регулятор, собранный на ОУ U1C. Для получения образцового напряжения применен регулируемый стабилитрон U2. Нужную частоту вращения устанавливают регулировкой этого напряжения с помощью переменного резистора R19. Выход ОУ U1C умощнен комплементарным эмиттерным повторителем на транзисторах VT1VT2. Казалось бы, направление тока питания двигателя всегда одно и то же и достаточно было бы одиночного эмитерного повторителя, который обеспечивал бы вытекающий ток. Но на самом деле с двухтактным эмиттерным повторителем гораздо лучше поведение системы во время переходных процессов (при пуске двигателя или при резких колебаниях нагрузки на валу) [2].

Рис.2. Форма сигналов в контрольных точках.

Нужно отдельно остановиться на проблеме устойчивости системы автоматического регулирования. В данной ситуации дело усложняется тем, что на устойчивость влияют и механические параметры системы, которые количественно учесть очень трудно. Поэтому в некоторых случаях придется подобрать АЧХ регулятора с помощью элементов R16C7 или даже ограничить коэффициент усиления, включив параллельно этой цепочке резистор. Подбор нужно вести по критерию устойчивости регулятора как в установившемся режиме, так и во время переходных процессов. Для этого нужно с помощью осциллографа контролировать напряжение питания двигателя. При включении оно должно плавно достичь номинального значения, причем без колебательного процесса. Если при работающем двигателе изменить нагрузку на валу, напряжение питания также должно принять новое значение без колебательного процесса. В регуляторе вместо LM324 можно применить практически любые ОУ, например, LM2902, или сдвоенные LM358, LM2904, или даже обычные KP140УД6, УД7. В зависимости от потребляемого двигателем тока может понадобиться установить транзистор VT1 на теплоотвод. Транзистор VT2 теплоотвода не требует.

Литература:
1. З. Гасымов. Стабилизатор частоты вращения электродвигателя. Радио, №12, 1987 г., стр. 48.
2. В. Псурцев. Модернизация ЭПУ G-602. Радиоежегодник, 1987 г., стр. 132 – 140.

Читайте также:  Чем эмульгатор отличается от стабилизатора

Источник

Схема стабилизатора оборотов электродвигателя для проигрывателя

Всем привет, история следующая:

Имеется советский магнитофон Электроника 302-1, нужна помощь в создании простой схемы для изменения диапазона и регулировки скорости коллекторного двигателя постоянного тока. Регулировка скорости мне необходима для того, чтобы можно было сводить два музыкальных трека между собой, с разным количеством ударов в минуту (BPM), соответственно с двух проигрывателей, аудио-микшером.

Сама схема желательно должна обладать стабилизатором напряжения и оборотов для двигателя с обратной связью, чтобы при вращении «неидеально» ровных движущих частей магнитофона (пассика, прижимного ролика, тонвала и т.д.) уменьшить детонацию.

Если тема с обратной связью слишком геморройна, тогда можно придумать что-нибудь со стабилизатором напряжения LM317.
Питание всех частей мафона (движка, фонокорректора, светодиодов с резисторами) – 9В, 1А (б.п. от какой-то электроники), поэтому хочу чтобы под 9В пахало

Идея в том, что нужно регулировать одним переменным резистором напряжение в таком виде (один на схеме виртуальный, для показа принципа работы, на схеме он должен быть один, с одним тумблером переключения диапазона):

То есть чтобы схема с серединой регулировки переменника выдавала ровно 4.8 В (при таком значении более-менее ровно по тону играет магнитофон, ну потом юстировать буду)

Еще нужно придумать схему, которая включает зеленый светодиод, при достижении 4.8 В на двигателе (либо в определенном диапазоне, например 4.79-4.81 В). Это поможет на вид определить так называемый «ноль»:

За помощь буду очень благодарен

В широко распространенных ныне переносных магнитолах производства стран Юго-Восточной Азии и некоторых стран Европы используются коллекторные двигатели постоянного тока (КДПТ) со встроенными регуляторами частоты вращения (с правым или левым вращением) на напряжение 6, 9 и 12В.

Рис. 1. Регулятор частоты двухскоростного электродвигателя на напряжение 12 В

Надежность этих стабилизаторов, мягко говоря, оставляет желать лучшего, и они довольно часто (особенно при интенсивной эксплуатации) выходят из строя. Стоимость двигателей в сборе довольно существенна. По моему мнению, проще заменить интегральную микросхему стабилизатора. Для упрощения ремонта и возможной модернизации привожу принципиальные схемы наиболее часто встречающихся КДПТ фирм «Matsuschita» и «Mabushi». На рис.1 – регулятор частоты двухскоростного электродвигателя на напряжение 12 В, на рис.2 – односкоростного, на 9 В. Схемы составлены непосредственно по печатным платам стабилизаторов. Включение дополнительных элементов для регулировки скорости вращения в первой схеме показано на рис.3.

Рис. 2. Регулятор частоты односкоростного электродвигателя на напряжение 9 В

Направление вращения вала КДПТ определяется по обозначению в правом нижнем углу заводской таблички: двигатель левого вращения обозначается CCW («contra clock way» – «против часовой стрелки»), правого вращения – CW («clock way» – «по часовой стрелке»). Описанные здесь стабилизаторы можно использовать и в отечественных кассетных магнитофонах и магнитолах взамен устаревших регуляторов РЧВ-1-02 и РС-1-09. К сожалению, примененные в них интегральные микросхемы не имеют отечественных аналогов.

Рис. 3. Включение дополнительных элементов для регулировки скорости вращения

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото – мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.

Фото – регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.
Читайте также:  Характеристика стабилизатора ресанта спн 8300

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.

Фото – шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото – схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Фото – синусоида нормальной работы электродвигателя

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.

Фото – схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.

Фото – схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:

Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

Источник

Стабилизатор вращения двигателя проигрывателя

Долго искал в интернете схемы стабилизации/// и решил что буду делать на МК)))

на двигателе эпу стоит датчик на просвет 10 отверстий (вроде)/// по преблизительным расчетам (взял с одной из схем) выход датчика
при 33/3 — 280Гц
при 45 — 380Гц

помогите пожалуйсто выбрать алгоритм измерения скорости.

я думал в сторону измерения периода сигнала с датчика с помощью захвата таймера? но пугает малая частота с датчика — хотел сделать пид регулятор/

немного поискав на эту тему понял что обсчет пид’а надо делать с определенной частотой (посоветовали 100Гц) но возникает проблема с измерением скорости/// так как при измерении по периоду частота будет плавать в зависимости от скорости/ и даже если я повешу пид на отдельный таймер то замеры частоты будут не стабильны/// (((

Читайте также:  Стабилизатор для айфон dji

прошу помощи совсем запутался/// заранее спасибо!

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Стробоскопический эффект возникает от освещения этих меток светом с частотой 100 Гц, зависящей от частоты в сети. А она может немного плавать (доли герц, если не ошибаюсь).

Не знаю что такое пид-регулятор, поэтому ничего не могу посоветовать по нему. Знаю, что диск эпу, на который кладут пластинку обладает значительной инерционностью. Поэтому можно выбрать период измерения частоты от десятых секунды до секунды-двух. А уж какой датчик будете использовать — мелиница на моторе или отражающие пластинки на диске — всё равно. Главное формулу коррекции напряжения питания мотора правильно забить в МК. Там тонкость в том, что коррекция напряжения происходит значительно позже того, как было зафиксировано отколонение скорости, поэтому если не грамотно окучить этот куст, то может получиться нечто вроде генератора. Не знаю что на эту тему курить, где-то тут встречал, но не помню. Это вопрос из серии автоматических систем с обратной связью.

А вообще, слушайте сиди и мп3 . Они всё равно качественней, чем пластинки, как ни крути. ЭПУшка сейчас может сгодиться только для оцифровки каких-нибудь раритетных записей, которых в инете никак не найти.

SoC BlueNRG-LP — новая микросхема от STMicroelectronics со встроенным микроконтроллером Cortex®-M0+ и приемопередатчиком BLE. В данной статье мы рассмотрели режимы пониженного потребления и программную поддержку пониженного энергопотребления в программном пакете BlueNRG-LP DK, процедуру обновления прошивки по эфиру с помощью специального BLE-сервиса, особенности работы UART-загрузчика с функцией защиты памяти, и другое.

да есть. но мне то нужна автоматическая коррекция, или ты имел ввиду поставить датчик на отражение?

ну стробоскоп я хотел сделать по таймеру на мк. чтобы понять правильно ли пашет стабилизатор.

это и есть пид (пропорциональный интегральный дифференциальный регулятор)

про инерционность это интересное замечание. просто проблема в том что при просчете пид’а (формулы) я не буду точно знать в какой момент я получил это значение скорости + хотелось бы еще сделать усреднение показаний скорости.

что если взять минимальную частоту в 100Гц. то есть к примеру 10 измерений я смогу выполнить за 10 сотых секунд -> расчет пида должен вызываться с частотой меньше 10 Гц что бы точно влезли все измерения. чето как то маловато. но

посему так и сделаю. принципе тогда можно туда пихать формулы любой сложности при частоте ЦП 1-4Мгц. то ка вот как быть с частотой ШИМ’а при 4Мгц она будет 15кГц. надо ли частоту шим выгонять за пределы слышимого диапазона?

еще вопрос знатокам аналоговых схем. хотел сделать шим выход с контроллера(дауш аналоговых), но там свободный таймер на 8 бит.
всего 256 градаций напряжения (по мне не очень точно, но у меня в таких вещах опыта мало) хотел бы сделать «составное питание» скажем двигатель на 12 вольт. подать 8 вольт постоянки + 0-4 вольт задавать по ШИМ. как считаете прокатит?

ну вроде все от всего зависит. )))) просто там можно поднять частоту. тк ацп быстро определит напряжение (ну быстрее чем диск с десятью отверстиями выдаст период) + плюс еще устройство выборки хранения есть (вроде) тоесть считай мгновенная скорость, только видимо не супер точная. жаль((((

ну скажешь тоже. каждому свое, но чисто психологически для меня Pink Floyd’вский Dark Side в виниле звучит круче. ну и плюс иглу за 1.5к уже взял)))) ( а еще подарили Iron Maiden двух дисковый. так блин и не послушал — сжег стабилизатор)

Компания Wolfspeed предлагает разработчикам стать частью новой истории и проверить самостоятельно все преимущества компонентов с широкой запрещённой зоной. Представляем вашему вниманию подборку материалов по теме SiC MOSFET, SiC-диодов и их применениям.

почитал одну тему. http://electronix.ru/forum/index.php?sh . 9796&st=75 ну и конечно с оглядкой на ответ B@R5uk’а решил:

Частота входного сигнала: 140Гц — 512Гц (думаю хватит всетаки в 2 раза больше нормальной надо сильно снижать питание)
Частота просчета ПИД: 60Гц (надеюсь что за двойной период мин входной частоты успею измерить даже если начну с середины импульса)

управление будет вовремя стабилизировать скорость

еще пришла в голову мысль сделать свою «мельницу» но только уже не с 10’ю, а с 128’ю отверстиями ну или 256’ю должно поднять частоту входа.

спасибо за ответы. как сделаю отпишусь)))))))))

ПРИСТ расширяет ассортимент

Источник