Меню

Стабилизатор напряжения выходной транзистор



Расчет параметрического стабилизатора напряжения на транзисторах

Приведена техника упрощенного расчета параметрического стабилизатора напряжения на транзисторах. Схема простейшего параметрического стабилизатора на стабилитроне и резисторе показана на рисунке 1.

Простой параметрический стабилизатор напряжения

Входное напряжение Uвх должно быть существенно выше напряжения стабилизации стабилитрона VD1. А чтобы стабилитрон не вышел из строя ток через него ограничен постоянным резистором R1. Выходное напряжение Uвых будет равно напряжению стабилизации стабилитрона, а с выходным током ситуация сложнее.

Дело в том, что у каждого стабилитрона есть некий диапазон рабочего тока через него, например, минимальный ток стабилизации 5 mA, а максимальный 25 mA. Если мы подключаем на выходе такого стабилизатора нагрузку, то часть тока начинает протекать через неё.

И величина максимального значения этого тока будет зависеть и от сопротивления R1 и от минимального тока стабилизации стабилитрона, — максимальный ток нагрузки будет уменьшен на минимальный ток стабилизации стабилитрона. То есть, получается, что чем меньше сопротивление R1, тем больший ток можно отдать в нагрузку. В то же время, ток через R1 не должен быть больше максимального тока стабилизации стабилитрона.

Схема простейшего параметрического стабилизатора на стабилитроне и резисторе

Рис. 1. Схема простейшего параметрического стабилизатора на стабилитроне и резисторе.

Так как, во-первых, стабилитрону необходим некий запас на поддержания напряжения на выходе стабильным, а во-вторых, стабилитрон может выйти из строя при превышении максимального тока стабилизации, что может при отключении нагрузки или её работе на режиме с низким током потребления.

Стабилизатор по такой схеме очень не эффективен и годится для питания только цепей, потребляющих ток не более максимального тока стабилитрона. Поэтому стабилизаторы по схеме на рис.1 используются только в схемах с небольшим током нагрузки.

Стабилизатор напряжения с применением транзистора

Если нужно обеспечить более-менее значительный ток нагрузки и снизить его влияние на стабильность нужно усилить выходной ток стабилизатора при помощи транзистора, включенного по схеме эмиттерного повторителя (рис.2).

Схема параметрического стабилизатора напряжения на одном транзисторе

Рис. 2. Схема параметрического стабилизатора напряжения на одном транзисторе.

Максимальный ток нагрузки данного стабилизатора определяется по формуле:

Ін = (Іст — Іст.мин)*h21э.

где Іст. — средний ток стабилизации используемого стабилитрона, h21э — коэффициент передачи тока базы транзистора VT1.

Например, если использовать стабилитрон КС212Ж (средний ток стабилизации = (0,013-0,0001) / 2 = 0,00645А), транзистор КТ815А с h21 э — 40) мы сможем получить от стабилизатора по схеме на рис.2 ток не более: (0,006645-0,0001) * 40 = 0,254 А.

К тому же, при расчетах выходного напряжения нужно учитывать, что оно будет на 0,65V ниже напряжения стабилизации стабилитрона, потому что на кремниевом транзисторе падает около 0,6-0,7V (примерно берут 0,65V).

Попробуем рассчитать стабилизатор по схеме на рисунке 2.

Возьмем такие исходные данные:

  • Входное напряжение Uвх = 15V,
  • выходное напряжение Uвых = 12V,
  • максимальный ток через нагрузку Ін = 0,5А.

Возникает вопрос, что выбрать — стабилитрон с большим средним током или транзистор с большим h21э?

Если у нас есть транзистор КТ815А с h21э = 40, то, следуя формуле Ін = (Іст -Іст.мин) * h21э, нам потребуется стабилитрон с разницей среднего тока и минимального 0,0125А.

Читайте также:  Физический смысл действующего значения напряжения

По напряжению он должен быть на 0,65V больше выходного напряжения, то есть 12,65V. Попробуем подобрать по справочнику.

Вот, например, стабилитрон КС512А, напряжение стабилизации у него 12V, минимальный ток 1 мА, максимальный ток 67 мА. То есть средний ток 0,033А. В общем подходит, но выходное напряжение будет не 12V, а 11,35V.

Нам же нужно 12V. Остается либо искать стабилитрон на 12,65V, либо компенсировать недостаток напряжения кремниевым диодом, включив его последовательно стабилитрону как показано на рисунке 3.

Принципиальная схема параметрического стабилизатора напряжения, дополненного диодом

Рис.3. Принципиальная схема параметрического стабилизатора напряжения, дополненного диодом.

Теперь вычисляем сопротивление R1:

R = (15 -12) / 0,0125А = 240 Ом.

Несколько слов о выборе транзистора по мощности и максимальному току коллектора. Максимальный ток коллектора Ік.макс. должен быть не менее максимального тока нагрузки. То есть в нашем случае, не менее 0,5А.

А мощность должна не превышать максимально допустимую. Рассчитать мощность, которая будет рассеиваться на транзисторе можно по следующей формуле:

Р = (Uвх — Uвых) * Івых.

В нашем случае, Р = (15-12)*0,5=1,5W.

Таким образом, Ік.макс. транзистора должен быть не менее 0,5А, а Рмакс. не менее 1,5W. Выбранный транзистор КТ815А подходит с большим запасом (Ік.макс.=1,5А, Рмакс.=10W).

Схема на составном транзисторе

Увеличить выходной ток без увеличения тока через стабилитрон можно только увеличив h21э транзистора. Это можно сделать если вместо одного транзистора использовать два, включенных по составной схеме (рис.4). В такой схеме общий h21э будет примерно равен произведению h21э обоих транзисторов.

Принципиальная схема стабилизатора напряжения на основе составного транзистора

Рис. 4. Принципиальная схема стабилизатора напряжения на основе составного транзистора.

Транзистор VT1 берут маломощный, а VT2 на мощность и ток, соответствующий нагрузке. Все рассчитывается примерно так же, как и в схеме по рисунку 3. Но теперь у нас два кремниевых транзистора, поэтому выходное напряжение снизится не на 0,65V, а на 1,ЗV.

Это нужно учесть при выборе стабилитрона, — его напряжение стабилизации (при использовании кремниевых транзисторов) должно быть на 1,ЗV больше требуемого выходного напряжения.

К тому же появился резистор R2. Его назначение — подавлять реактивную составляющую транзистора VТ2, и обеспечивать надежную реакцию транзистора на изменение напряжения на его базе.

Величина этого сопротивления слишком уж существенного значения не имеет, но и за пределы разумного выходить не должна. Обычно его выбирают примерно в 5 раз больше сопротивления R1.

Источник

5 схем простых стабилизаторов напряжения

Практически каждый электронный прибор требует для своей работы питания. Одни схемы некритичны к величине и стабильности питающего напряжения, но большинство все же требует для своей работы напряжений строго заданной величины. Сегодня мы поговорим о простых стабилизаторах и разберемся, какими они бывают и как работают.

Простейший параметрический

В основу параметрических стабилизаторов положено свойство сильной нелинейности вольтамперной характеристики (ВАХ) некоторых полупроводниковых приборов. Рассмотрим принцип работы простейшего параметрического стабилизатора, собранного на стабилитроне.

Читайте также:  Механические напряжения условия прочности

Как известно, стабилитрон имеет участок ВАХ, на котором напряжение на полупроводнике почти не зависит от тока через него. Нижний порог этого участка называют Iст. min, верхний – Iст.max. При подаче на схему напряжения питания Uвх, через стабилитрон начинает течь ток, который задается токоограничивающим (балластным) резистором R1. Если он находится в пределах Iст. min — Iст. max, то на выводах стабилитрона установится определенное напряжение Uст, которое зависит от типа полупроводникового прибора.

При подключении нагрузки (на схеме для наглядности ее роль исполняет резистор R2) ситуация несколько меняется. Ток, протекающий через балластный резистор, делится. Часть его продолжает течь через стабилитрон, часть питает нагрузку. В результате ток через стабилитрон уменьшается и при достаточно мощной нагрузке может упасть ниже пределах Iст. min.

В этом случае полупроводник выйдет из режима стабилизации и перестанет исполнять свои функции. Таким образом, подобные схемы годятся лишь для питания маломощных устройств, потребляющих единицы, максимум несколько десятков миллиампер. Их используют, к примеру, для получения опорных напряжений.

Вполне очевидно, что напряжение Uвх должно быть выше Uст. В противном случае стабилитрон не сможет выйти на рабочий режим. Обычно величину Uвх выбирают не менее чем на 3-5 В выше Uст.

А теперь попробуем собрать практическую схему стабилизатора на 12 В, используя стабилитрон КС512А. Смотрим на его характеристики:

  • Uст – 12 В (при токе Iст. 5 мА);
  • Iст.min – 1 мА;
  • Iст.max – 67 мА.

Входное напряжение выберем равным 15 В. Ток через стабилитрон с отключенной нагрузкой выберем как можно ближе к максимальному, но с некоторым запасом – 50 мА. Запас этот нужен на случай, если входное напряжение повысится – оно ведь нестабилизированное. Исходя из этого, рассчитываем номинал балластного резистора по формуле:

R=(Uвх- Uвых)/Iстаб

  • R — сопротивление балластного резистора R1, Ом;
  • Uвх — входное напряжение, В;
  • Uвых — выходное напряжение, В;
  • Iстаб — ток через стабилитрон, А.

Включаем калькулятор и считаем: R1=(15-12)/0.05=60 Ом. Какой ток в нагрузку сможет отдать такая схема? Как мы выяснили, при подключении нагрузки ток через балластный резистор будет составлять Iбал=Iстаб+Iнагр, а значит, Iстаб=Iбал–Iнагр. Нижний передел режима стабилизации выбранного нами полупроводника – 1 мА. Значит, наш стабилизатор сможет отдать в нагрузку порядка 40-45 мА. При этом ток через стабилитрон упадет до 5-10 мА. Дальнейшее повышение Iнагр приведет к еще большему уменьшению Iстаб, что может вызвать неустойчивую работу стабилитрона, скажем, при уменьшении входного напряжения, которое, как мы помним, нестабилизировано.

Включаем калькулятор и считаем: R1=(15-12)/0.05=60 Ом.

Значит, наш стабилизатор сможет отдать в нагрузку порядка 40-45 мА. При этом ток через стабилитрон упадет до 5-10 мА. Дальнейшее повышение Iнагр приведет к еще большему уменьшению Iстаб, что может вызвать неустойчивую работу стабилитрона, скажем, при уменьшении входного напряжения, которое, как мы помним, нестабилизировано.

Параметрический с транзисторным ключом

В предыдущем разделе мы выяснили, что простейший стабилизатор имеет существенный недостаток – он не может обеспечить питанием более-менее мощную нагрузку. Кроме того, коэффициент стабилизации (зависимость выходного напряжения от входного) у предыдущей схемы относительно небольшой. Выйти из положения можно при помощи дополнительного элемента – транзистора.

Читайте также:  Тонна напряжения что это

Схема параметрического стабилизатора с транзисторным ключом

Как видно из схемы, стабилитрон теперь питается от «личного» токоограничивающего резистора R1, ток через который не зависит от тока, протекающего через нагрузку. Стабилизированное стабилитроном D1 напряжение прикладывается к базе транзистора Т1. В результате на нагрузке устанавливается стабильное напряжение, величина которого составит разницу напряжений стабилизации стабилитрона и падения на n-p переходе транзистора. Uвых=Uст-Uбэ.

То есть если мы хотим получить к, примеру, выходное напряжение 12 В, то необходимо взять стабилитрон с большим (порядка 0.6 – 1.3 В – зависит от типа применяемого транзистора) напряжением стабилизации. К примеру, Д814Д (Uст. – 13 В). Но, что важно, такое решение существенно улучшает коэффициент стабилизации схемы, которая складывается из произведения коэффициента стабилизации стабилитрона и коэффициента передачи транзистора.

Главное же достоинство подобной схемы – большой отдаваемый ток, величина которого зависит от мощности транзистора. Это позволяет строить относительно простые стабилизаторы с неплохими характеристиками, способными выдавать токи в единицы и даже десятки ампер.

На интегральном стабилизаторе

Но и это не предел. Существенно улучшить характеристики источника питания можно применением специализированных микросхем – так называемые интегральных стабилизаторов. Схема, изображенная ниже, не только имеет хороший коэффициент стабилизации, но и оснащена защитой от перегрузки, перегрева и короткого замыкания (все в составе микросхемы). Это уже полноценный стабилизатор.

Стабилизатор напряжения на микросхеме КР142ЕН5А (зарубежный аналог IL7805C)

Ну и, конечно, при использовании микросхем конструкция БП существенно упрощается. Создание ее требует минимума дополнительных элементов и не нуждается в расчетах и регулировке. Достаточно выбрать тип микросхемы и можно получить нужное выходное напряжение.

Ток, отдаваемый такими микросхемами, может достигать нескольких ампер (зависит от типа). Но если его недостаточно, то можно использовать транзисторный ключ, как мы это делали в случае со стабилитроном.

Мощный стабилизатор напряжения 12 В на микросхеме и транзисторе

Схема с повышенным напряжением стабилизации

Ну и в завершении хотелось бы отметить один существенный недостаток вышеприведенных схем. Все они являются линейными или непрерывными стабилизаторами, в которых регулирующий элемент работает в линейном режиме. Такое решение достаточно просто, но имеет низкий КПД – ведь вся «лишняя» мощность бесполезно рассеивается на этом элементе.

К примеру, если построить БП на интегральном стабилизаторе КР142ЕН5А (см. схему выше) и выбрать Uвх. 15 В, то при токе в нагрузке 2 А на самой микросхеме будет рассеиваться мощность 2 * 10 = 20 Вт. Это вдвое больше полезной мощности, питающей саму нагрузку. То есть КПД такой схемы составить чуть более 30%.

В заключение. Существенно повысить КПД блока питания можно заставив работать регулирующий элемент в ключевом режиме, применив широтно-импульсную модуляцию (ШИМ). Но поскольку у нас разговор о простых стабилизаторах, а схемы с широтно-импульсным управлением относительно сложны, то здесь мы их рассматривать не будем.

Источник