Меню

Стабилизатор линейного блока питания



Стабилизатор линейного блока питания

Блок питания «Проще не бывает». Часть вторая

Автор:
Опубликовано 01.01.1970

Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.

Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.

Схема стабилизатора показана на рисунке.

Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
1 — сам стабилизатор на стабилитроне D с балластным резистором R б
2 — эмиттерный повторитель на транзисторе VT.

Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.

Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их:
Uвых — это напряжение
и
Imax — это ток.

Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.

Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых.
Это напряжение определяется по формуле:

Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.

Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.

Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно.
Смотри сам:

Если мы берем Uвых=14 вольтам, то получаем P max =1.3*(17-14)*1=3.9 Вт.
А если мы примем Uвых=1.5 вольта, то P max =1.3*(17-1.5)*1=20,15 Вт

То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.

Читайте также:  Lm317 стабилизатор тока характеристики

Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор.

Фу, ну вроде с этим справились. Пошли дальше.

Считаем сам стабилизатор.

Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).

I б max =I max / h21 Э min

h21 Э min — это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?

I б max =1/25=0.04 А (или 40 мА). Не мало.

Ну давайте будем теперь искать стабилитрон.
Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.

Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали.
Полезли опять в справочник.

По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h21Э раз. h21Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h21Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.

Теперь посчитаем сопротивление и мощность балластного резистора R б .

R б =(Uвх-Uст)/(I б max +I ст min )

где Uст — напряжение стабилизации стабилитрона,
Iст min — ток стабилизации стабилитрона.

R б = (17-14)/((1.33+5)/1000) = 470 Ом.

Теперь определим мощность этого резистора

P rб =(U вх -U ст )2/R б .

P rб =(17-14)2/470=0,02 Вт.

Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.

Читайте также:  Стабилизатор поперечной устойчивости лада гранта диаметр

Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).

Итак, смотрим на схему выпрямителя.

Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.

Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт.
Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.

Едем дальше. Определим емкость конденсатора фильтра.

C ф =3200I н /U н K н

где Iн — максимальный ток нагрузки,
Uн — напряжение на нагрузке,
Kн — коэффициент пульсаций.

В нашем случае
Iн = 1 Ампер,
Uн=17 вольтам,
Kн=0,01.

C ф =3200*1/14*0,01=18823.

Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.

Осталось выбрать выпрямительные диоды или диодный мост.

Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.

Необходимое максимальное обратное напряжение считается так

U обр max =2U н , то есть U обр max =2*17=34 Вольта.

А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.

Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы.
Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.

Источник

Стабилизаторы напряжения в блоках питания

Стабилизаторы напряжения в блоках питания при конструировании стабилизированных блоков питания различной аппаратуры, как правило, используют микросхемы стабилизаторов напряжения. Большая номенклатура таких микросхем предоставляет конструкторам широкую возможность их выбора для создания стабилизатора с требуемыми параметрами. В некоторых случаях, однако, для построения относительно мощных стабилизаторов вполне применимы маломощные микросхемы. Примером в этом отношении может служить построение стабилизатора напряжения, встраиваемого в сетевой адаптер.

Читайте также:  Чем отличаются стабилизаторы для телефонов

В большинстве случаев, как известно, такие адаптеры, особенно импортные, обеспечивают выходной ток до 0,5 А и не содержат стабилизатора напряжения. Если для повышения “качества” выпрямленного напряжения необходим стабилизатор, можно использовать микросхемы ИМС. Из-за доступности микросхем серии КР142. Для получения выходного напряжения 9В обычно выбирают КР142ЕН8А, КР142ЕН8Г. Однако они обеспечивают ток нагрузки до 1 …1,5А при еще большем токе короткого замыкания (КЗ). Из-за этого при возникновении аварийной ситуации могут выйти из строя трансформатор и выпрямительные диоды адаптера. Чтобы избежать этого, нужен стабилизатор с током нагрузки до 0,5 А и током КЗ не более 0,6 А. Но найти микросхемы с такими параметрами и с выходным напряжением 9 В затруднительно.

Стабилизаторы напряжения в блоках питания выход из положения есть. Нужно использовать маломощную микросхему и “умощнить” ее с помощью транзистора (на рисунке выше в статье). В таком устройстве при токе нагрузки более 20 мА падения напряжения на резисторе R1 окажется достаточно для открывания транзистора VT1. Ток потечет “в обход” DA1, выходное напряжение будет определяться ее параметрами, а ток нагрузки может превысить допустимый выходной ток микросхемы во много раз. Правда, ток КЗ достигнет 1…1.5А, что чревато вышеуказанными последствиями.

Ограничить ток КЗ нетрудно введением еще одного транзистора (VT2 на рисунке).

Тогда при токе нагрузки до 20 мА по-прежнему будет работать только DA1, а транзисторы окажутся закрытыми. Когда ток превысит указанное значение, откроется транзистор VT1 и ток потечет через него. Как только ток достигнет значения 400…500 мА либо в цепи нагрузки возникнет КЗ, на резисторе R1 появится такое напряжение, которое откроет транзистор VT2. Теперь оба транзистора начнут работать в режиме стабилизатора тока.

Резистором R1 задают ориентировочное значение тока стабилизации: lCT = 0,6/R1. При этом ток КЗ составит: lK3 = lCT + 1КЗ.МС, где кз.мс ток КЗ микросхемы. В обоих устройствах транзисторы VT1 — любые из серий КТ814, КТ816. Транзистор VT2 должен быть с малым напряжением насыщения коллектор—эмиттер, поэтому желательно применить, кроме указанного на схеме, транзисторы КТ208А—КТ208М, КТ209А—КТ209М, КТ3107А-КТ3107И, КТ3108А— КТ3108В. Конденсатор С1 — конденсатор фильтра адаптера.

Источник