Меню

Способы уменьшения электрического напряжения



Способы уменьшения электрического напряжения

Как уменьшить напряжение тока

Необходимость понизить напряжение промышленной линии электропередачи или источника питания бытовой аппаратуры возникает довольно часто по тем или иным причинам. Это можно с успехом сделать, применив трансформаторные или бестрансформаторные способы уменьшения напряжения. Статьи по теме:

  • трансформатор, резистор, конденсатор

Инструкция
1 Устройства для снижения напряжения на базе трансформаторов используются обычно в цепях переменного тока. Если имеют место скачки напряжения, рекомендуется применять стабилизирующие устройства (феррорезонансные стабилизаторы). Прогнозируемое повышение напряжения возможно скомпенсировать обычным автотрансформатором. Это устройство также обеспечит уменьшение величины напряжения в заданном диапазоне. В основе всех этих устройств используются различные виды трансформаторов.
2 Для маломощных потребителей в цепях переменного тока можно использовать гасящий резистор или конденсатор. Номинал резистора (в Омах) можно рассчитать по следующей формуле: R = Uпад/I = (Uс — U)/I. Емкость (в микрофарадах) гасящего конденсатора можно рассчитать по формуле: С = 3200 I/, где R – значение резистора, Ом; I – потребляемый устройством ток, A; Uпад – напряжение, которое должен гасить резистор, В; Uс – напряжение сети, В; U – напряжение питания устройства, В.
3 Для уменьшения напряжения питания в цепях постоянного тока, в большинстве случаев, используются последовательно включенные в цепь стабилитрон, микросборка-стабилизатор (КРЕН) или импульсный преобразователь. Различные типы этих устройств предназначены для понижения напряжения питания до определенной величины. Работа вышеперечисленных электронных устройств основана на свойствах полупроводников. Поэтому их применение предполагает наличие твердых знаний в области электронной техники. Видео по теме

Обратите внимание Принимая решение о выборе одного из вышеперечисленных способов понижения напряжения, необходимо следовать следующему алгоритму:
— определить величину, на которую требуется;
— выбрать один из приемлемых способов;
— произвести расчеты и убедиться в их правильности;
— выполнять все работы с соблюдение правил безопасности;
— проводить проверку работы схем только при установке номинальных предохранителей в электрических цепях. Источники:

  • как уменьшить напряжение конденсатором

Источник

Что такое напряжение, как понизить и повысить напряжение

Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Что такое напряжение, как понизить и повысить напряжение

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:

Если выразить через работу, тогда:

где A — работа, q — заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

Разобранный вольтметр

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Вольтметр

Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».

Измерение напряжения постоянного тока

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.

Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:

Читайте также:  Как определить напряжение питания для транзистора

где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.

Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:

Когда переменный ток проходит через проводник, вокруг проводника образуется магнитное поле. Если проводник намотан на катушку, то магнитное поле увеличивается. Если в цепи образуется значительное магнитное поле, то в этой цепи возникает противодействие потоку тока, что называется индуктивным реактивным сопротивлением.

Пример использования индуктивного сопротивления — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Бестраснформаторный блок питания

Как понизить и стабилизировать напряжение постоянного тока

Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.

Стабилизатор напряжения

Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.

Схема LM317

Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.

Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:

Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.

ШИМ аналог преобразователей типа L78xx

Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.

Схема включения преобразователя

Как повысить постоянное напряжение?

Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:

1. Плата на базе микросхемы XL6009

Плата на базе микросхемы XL6009

2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.

Плата на базе LM2577

3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.

Плата преобразователь на FP6291

4. Плата на базе MT3608

Плата на базе MT3608

Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.

Как повысить переменное напряжение?

Для корректировки переменного напряжения используют два основных способа:

Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.

Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.

Схема автотрансформатора

Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.

Лабораторный автотрансформатор

Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.

Устройство трансформатора

Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:

Зарядное устройство вашего смартфона;

Блок питания ноутбука;

Блок питания компьютера.

Блоки питания

За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).

В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.

Импульсный блок питания

Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.

Схема электронного трансформатора

Достоинства – простота схемы, гальваническая развязка и малые размеры.

Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.

Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.

Заключение

Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.

Источник

Резисторы, ток и напряжение

Как получить 12В из подручных средств

Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

Читайте также:  Головная боль напряжения после стресса

Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

  • Как выпаивать радиодетали из плат
  • Как проверить диодный мост
  • Как определить емкость конденсатора
  • Маркировка резисторов по мощности и сопротивлению

Опубликовано:
08.05.2018
Обновлено: 08.05.2018

Как уменьшить вольтаж трансформатора

Как уменьшить вольтаж на трансформаторе.

В этой статье я расскажу вам, как из трансформатора с выходом 32 В, сделать трансформатор с выходом 12 В. Иными словами — уменьшить вольтаж трансформатора.

Для примера, возьму транс от китайского ч/б телевизора «Jinlipu».

Я думаю, очень многие встречались с ним или подобным.

Итак, для начала нам нужно определить первичную и вторичные обмотки. Чтобы это сделать, нужен обычный омметр. Замеряем сопротивление на выводах трансформатора.

На первичной обмотке сопротивление больше, чем на вторичной и составляет, обычно, не менее 85 Ом.После того, как мы определили эти обмотки, можно приступать к разбору трансформатора. Нужно отделить друг от друга Ш-образные пластины.

Для этого нам понадобятся некоторые инструменты, а именно: круглогубцы, плоскогубцы, маленькая отвёрточка для «подцепа» пластин, кусачки, нож.

Чтобы вытащить самую первую пластинку, придётся потрудиться, но потом остальные пойдут, как «по маслу»

Работать нужно очень осторожно, так как легко можно порезаться о пластины

Конкретно на этом трансформаторе нам известно, что на выходе у него 32 В.

В случае, когда мы этого не знаем, нужно перед разбором обязательно замерить напряжение, чтобы в дальнейшем мы смогли вычислить, сколько витков идёт на 1 В.

После того, как пластины были извлечены, нужно снять с обмоток пластмассовый корпус. Делаем это смело, так как на работу трансформатора это никак не повлияет.

Затем находим на вторичной обмотке доступный для размотки контакт и кусачками «откусываем» его от места спайки. Далее начинаем разматывать обмотку, при этом обязательно считаем количество витков. Чтобы проволока не мешала, её можно наматывать на линейку или что-то подобное.

Так как на этом трансформаторе на вторичной обмотке 3 вывода (два крайних и один средний), то логично предположить, что напряжение на среднем выводе равняется 16В, ровно половина от 32В. Разматываем обмотку до среднего контакта, т.е. до половины, и подсчитываем количество витков, которое мы размотали.

(Если у трансформатора два вывода на вторичной обмотке, то разматываем «на глаз» до половины, считаем витки при этом, затем отрезаем размотанную проволоку, зачищаем её конец, припаиваем назад к контакту и собираем трансформатор, делая всё то же, что при разборке, только в обратном порядке.

Количество витков, которое вы размотали, равняется 105. Значит 105 витков приходится на 17В (35В-18В=17В). Отсюда следует, что на 1В приходится примерно 6,1 витков (105/17=6,176). Теперь, чтобы нам убавить напряжение ещё на 6В (18В-12В=6В), вам нужно размотать примерно 36,6 витков (6,1*6=36,6). Можно округлить эту цифру до 37.

Для этого вам нужно опять разобрать трансформатор и проделать эту «процедуру».). В нашем случае, дойдя до половины обмотки, у нас получилось 106 витков. Значит эти 106 витков приходятся на 16В. Вычисляем сколько витков приходится на 1В (106/16=6,625) и отматываем ещё примерно 26,5 витков (16В-12В=4В; 4В*6,625витков=26,5 витков).

Затем «откусываем» отмотанную проволоку, зачищаем от лака её конец, залуживаем и припаиваем к контакту на трансформаторе, от которого он был «откусан».

Остаётся замерить напряжение, которое у нас получилось:

Поздравляю вас, коллеги, всё получилось отлично!

В следующей статье я расскажу, как из этого трансформатора сделать блок питания постоянного тока на 12В.

Гасящий конденсатор вместо резистора

Иногда возникает задача понизить переменное напряжение сети 220 вольт до некоторого заданного значения, причем применение понижающего трансформатора (в таком случае) не всегда бывает целесообразным.

Скажем, низкочастотный понижающий трансформатор, выполненный традиционно на трансформаторном железе, способный преобразовать мощность 200 Ватт, весит больше килограмма, не говоря о высокой стоимости.

Следовательно в некоторых случаях можно применить гасящий резистор, который ограничит ток, однако при этом на самом гасящем резисторе выделится мощность в виде тепла, а это не всегда является приемлемым.

Например, если нужно запитать 200 Ваттную лампу только на половину ее наминала, потребовалось бы рассеять мощность в 100 Ватт на гасящем резисторе, а это крайне сомнительное решение.

Весьма удобной альтернативой, для данного примера, может служить применение гасящего конденсатора, емкостью около14мкф, (такой можно собрать из трех металлопленочных типа К73-17 по 4,7мкф, рассчитанных на 250в, а лучше – на 400в) это позволит получить нужный ток без необходимости рассеивать значительную мощность в виде тепла.

Рассмотрим физическую сторону этого решения. Как известно, конденсатор, включенный в цепь переменного тока, является реактивным элементом, обладающим емкостным сопротивлением, связанным с частотой переменного тока в цепи, а также с собственной емкостью.

Чем больше емкость конденсатора и чем выше частота переменного напряжения в цепи, тем больший ток проходит через конденсатор, значит емкостное сопротивление конденсатора обратно пропорционально его емкости, а также частоте переменного тока, в цепи, куда он включен.

Это видно и из формулы для емкостного сопротивления конденсатора:
Если в цепь переменного тока включены последовательно резистор (активная нагрузка) и конденсатор, то их общее сопротивление можно найти по формуле:
Итак, зная напряжение на нагрузке, силу тока нагрузки и напряжение на гасящем конденсаторе, можно определить емкость гасящего конденсатора, который нужно включить последовательно нагрузке для получения требуемых параметров питания:
Рассмотрим пример: требуется запитать лампу накаливания мощностью 100 Ватт, рассчитанную на напряжение 110 вольт от розетки 220 вольт. В первую очередь найдем значение рабочего тока лампы:

Получим значение тока лампы равное 0,91 А. Теперь можно найти требуемое значение емкости гасящего конденсатора, она будет равна 15,2 мкФ.

Следует отметить, что этот расчет верен для чисто активной нагрузки, когда имеет место эффективное значение. При использовании же выпрямителя, необходимо учесть, что эффективное значение тока будет немного меньше в силу действия пульсаций. Также следует помнить, что в качестве гасящих конденсаторов, полярные конденсаторы применять ни в коем случае нельзя.

Лучшее сочетание вакуумных и полупроводниковых характеристик — однотактный гибридный усилитель звука.

Мы не создаём иллюзий, Мы делаем звук живым!

Два простых способа снизить напряжение на электролампах

Если надоело постоянно менять перегоревшие лампы, воспользуйтесь одним из приведенных советов. Но во всех случаях успех достигается за счет существенного снижения напряжения.

В дневное и особенно в ночное время напряжение в сети нередко достигает 230-240В что приводит к ускоренному выгоранию нитей накала электроламп.

Читайте также:  У ребенка астма физического напряжения

Подсчитано,что повышение напряжения всего лишь на 4% по сравнению с номинальным(то есть с 220 до 228В) сокращает срок службы электроламп на 40%, а при повышенном «питании» в 6% этот срок снижается более чем наполовину.

В то же время уменьшение напряжения на лампах всего на 8%(до 200-202В) увеличивает «стаж» их работы в 3,5 раза, при 195В он возрастает почти в 5 раз

Разумеется с понижением напряжения, снижается и яркость свечения, но во многих случаях, в частности в служебных помещениях, и в местах общего пользования, это обстоятельство не так уж и важно

Как же снизить напряжение на электролампах? Существуют два простых способа.

Первый-включают последовательно две лампы (рис 1). А какую же лампу взять в качестве дополнительной?. Можно такую же, как и основная. Но тогда обе лампы будут светить слабо.

Лучше всего подбирать лампу так, чтобы мощности ламп отличались в 1,5-2 раза, например 40 и 75 Вт, 60 и 100 Вт и.т.д.

Тогда лампа меньшей мошности будет светиться достаточно ярко, а более мощная слабее, выполняя роль своеобразного балласта, гасящего избыточное напряжение (рис.2.).

На первый взгляд выигрыша нет-ведь приходится использовать сразу две лампы вместо одной. Но вот что показывает простейший расчет; падение напряжения на лампах при последовательном соединении распределяется обратно пропорционально их мощности.

Поэтому при напряжении в сети 220В (возьмем пару ламп на 40 и 75 Вт) на 40- ваттной лампе напряжение будет около 145В, а на её 75-ваттной «партнерше»-чуть больше 75В.

Так как долговечность зависит от величины напряжения, понятно, что менять придется в основном лампу меньшей мощности. Да и та, как показывает практика, в худшем случае служит не менее года.

В обычных условиях за это же время приходится менять от 5 до 8 ламп (имеется в виду ежесуточная работа в течении 12 часов). Как видите, экономия весьма ощутима.

Другой способ-последовательное включение лампы и полупроводникового диода. Благодаря малым размерам его можно установить в конусе выключателя между клеммой и одним из подводящих проводов. При этом варианте происходит едва заметное мерцание ламп (за счет однополупериодического выпрямления переменного тока), а среднее значение напряжения на них составляет около 155В.Теперь о выборе типа диода. Он должен иметь определенный запас по допустимому току и быть рассчитан на напряжение не ниже 400В. Из миниатюрных диодов этому требованию отвечают серии КД150 и КД209. Однако диоды марки КД105 следует применять с лампами, у которых мощность не превышает 40Вт, а диоды КД209 (с любым буквенным индексом)-для совместной работы с 75-ватными осветительными приборами. Разумеется использовать можно и более мощные диоды других типов, но тогда их придется устанавливать вне выключателя. Правильно подобранный диод служит практически неограниченное время. Теперь разберем ещё один вопрос. Как быть тем, если в доме общий выключатель на весь подъезд? В этом случае устанавливают один диод большой мощности. Его крепят на металлическом уголке, привинчивают шурупами к стене рядом с выключателем, и закрывают кожухом с веньтиляционными отверстиями. Рекомендуемые типы диодов: КД202М, Н,Р или С, КД203, Д232-Д234, Д246-248 с любым буквенным индексом. При выборе типа диода помните, что его максимально допустимый рабочий ток (указан в паспорте полупроводникового прибора) на 20-25% должен превышать суммарный ток, потребляемый одновременно всеми лампами, относящимися к данному выключателю. Если диод допускает ток всех лампочек (его нетрудно посчитать разделив общую мощность всех ламп на напряжение сети 220В ) не должен превышать 4А.

Как повышают и понижают напряжение?

Повышение и понижение напряжения осуществляют с помощью трансформаторов.

Трансформатор состоит из двух катушек изолированного провода, намотанных на общий стальной сердечник (рис. 16.4).

На одну катушку (называемую первичной обмоткой) подают переменный ток одного напряжения, а с другой катушки (вторичной обмотки) снимают переменный ток другого напряжения.

Рис. 16.4. Повышающий и понижающий трансформаторы.

Оно сосредоточено в основном внутри стального сердечника, поэтому обе обмотки пронизываются одним и тем же переменным магнитным потоком.

Поэтому вследствие явления электромагнитной индукции в каждом витке каждой обмотки возникает одна и та же ЭДС индукции.

Суммарная ЭДС в каждой из катушек равна сумме ЭДС во всех ее витках, так как витки соединены друг с другом последовательно. Поэтому отношение напряженийина вторичной и первичной обмотках равно отношению числа витков в них:Например, если во вторичной обмотке в 10 раз больше витков, чем в первичной, напряжение во вторичной обмотке будет в 10 раз больше, чем в первичной.

Если напряжение во вторичной обмотке трансформатора больше, чем в первичной, его называют повышающим, а если меньше, то понижающим.

Основными потребителями электроэнергии являются производство и транспорт. На бытовые нужды приходится не более 5-10% всей производимой электроэнергии.

Рис. 16.5. Основные этапы производства, передачи и потребления электроэнергии.

Понижаем постоянное напряжение

При конструировании электроники часто возникает необходимость понижения напряжения имеющегося блока питания. Мы также рассмотрим несколько типовых ситуаций.

Если вы работаете с микроконтроллерами – могли заметить, что некоторые из них работают от 3 Вольт. Найти соответствующие блоки питания бывает непросто, поэтому можно использовать зарядное устройство для телефона. Тогда вам нужно понизить его выход с 5 до 3 Вольт (3,3В). Это можно сделать, если опустить выходное напряжение блока питания путём замены стабилитрона в цепи обратной связи. Вы можете добиться любого напряжения как повышенного, так и пониженного – установив стабилитрон нужного номинала. Определить его можно методом подбора, на схеме ниже он выделен красным эллипсом.

А на плате он выглядит следующим образом:

На следующем видео автор демонстрирует такую переделку, только не на понижение, а на повышение выходных параметров.

На зарядных устройствах более совершенной конструкции используется регулируемый стабилитрон TL431, тогда регулировка возможна заменой резистора или соотношением пары резисторов, в зависимости от схемотехники. На схеме ниже они обозначены красным.

Кроме замены стабилитрона на плате ЗУ, можно опустить напряжение с помощью резистора и стабилитрона – это называется параметрический стабилизатор.

Еще один вариант – установить в разрыв цепи цепочку из диодов. На каждом кремниевом диоде упадёт около 0,6-0,7 Вольт. Так опустить напряжение до нужного уровня можно, набрав нужное количество диодов.

Часто возникает необходимость подключить устройство к бортовой сети автомобиля, оно колеблется от 12 до 14,3-14,7 Вольт. Чтобы понизить напряжение постоянного тока с 12 до 9 Вольт можно использовать линейный стабилизатор типа L7809, а, чтобы опустить с 12 до 5 Вольт – используйте L7805. Или их аналоги ams1117-5.0 или ams1117-9.0 или amsr-7805-nz и подобные на любое нужное напряжение. Схема подключения таких стабилизаторов изображена ниже.

Напоследок рекомендуем просмотреть видео, на которых наглядно рассмотрены способы понижения напряжения:

Вот и все наиболее рациональные варианты, позволяющие понизить напряжение постоянного и переменного тока. Надеемся, предоставленная информация была для вас полезной и интересной!

Источник