Меню

Схема высокого напряжения постоянного тока



Источник постоянного тока высокого напряжения (HVDC). Схема

Конструкция блока питания HVDC.

Для таких цепей, как счетчики Гейгера, трубки Никси и датчики, требуются источники постоянного тока высокого напряжения (HVDC). На рынке доступны различные типы блоков питания HVDC, в том числе удвоитель напряжения, преобразователь с обратной связью и повышающий преобразователь. Некоторые из них имеют низкую выходную мощность по току. Но при правильных вычислениях с использованием базовых формул повышающего преобразования мы можем добиться поставок HVDC, способных к чистой и высокой токовой емкости.

Авторский прототип для проектирования блока питания постоянного тока

Здесь представлен дизайн повышающего преобразователя с использованием преобразователя постоянного тока MC34063. Авторский прототип показан на рис. 1.

Основы Boost Converter

Схема повышающего переключения регулятора

В повышающем преобразователе (рис. 2) энергия накапливается в катушке индуктивности (L1a) в течение времени, когда транзистор (T1a) включен. Когда транзистор выключен (toff), энергия передается последовательно с входом Vin на конденсатор выходного фильтра (Cout) и нагрузку (RL). Эта конфигурация позволяет установить выходное напряжение на любое значение, превышающее входное. Рис. 2: Схема повышающего импульсного регулятора. Выходное напряжение можно рассчитать следующим образом: Vout = Vin (ton / toff) + Vin или Vout = Vin ((ton / toff) +1)

Схема и работа

Принципиальная схема повышающего преобразователя с использованием преобразователя постоянного тока MC34063 показана на рис. 3. MC34063 – это монолитная схема управления, содержащая все активные функции, необходимые для переключения преобразователей постоянного тока в постоянный. Он представляет собой значительный прогресс в простоте использования с высокоэффективными, но простыми переключающими регуляторами. Использование переключающего регулятора становится более явным, чем линейные регуляторы, из-за требований к размерам и энергоэффективности новых конструкций оборудования. Импульсные регуляторы увеличивают гибкость применения при одновременном снижении стоимости.

Принципиальная схема блока питания постоянного тока

Рис. 3: Принципиальная схема источника питания постоянного тока.

MC34063 был разработан для применения в режиме пониженного напряжения, повышающего напряжения и преобразователя напряжения. Включает в себя температурной компенсацией опорного напряжения, генератор, активный пик тока предела, выходной выключатель и выходного напряжения компаратора. Все эти функции содержатся в 8-контактном корпусе DIP или SOIC. Внутренняя схема MC34063 в соответствии с таблицей данных, представленной Texas Instruments, показана на рис. 4. Блок-схема МС34063Рис. 4: Блок-схема MC34063. Его вывод 5 (инвертирующий вход компаратора) измеряет и устанавливает постоянное значение выходного напряжения для расчета значений резистора обратной связи. как показано на рис. 5. Внешние резисторыРис. 5: Внешние резисторы Vout = 1,25 ((R2a / R1a) +1) Внутренний регулятор напряжения вырабатывает 1,25 вольт для внутреннего компаратора, поэтому внешний делитель напряжения, состоящий из R1a и R2a, должен быть расположен таким образом, чтобы он давал ровно 1,25 вольт при желаемое выходное напряжение достигнуто. Например, если вам нужно выходное напряжение около 501 Вольт, значения резистора делителя напряжения должны быть R2a = 2,4 Мегаомметра и R1a = 6 кОм соответственно.

Как показано на блок-схеме, выход компаратора срабатывает и отключает защелку SR. Генератор, приводимый в действие синхронизирующим конденсатором на выводе 3, состоит из источника тока и элементов-поглотителей, которые заряжают и разряжают внешний синхронизирующий конденсатор между верхним и нижним заданными пороговыми значениями. Как правило, токи заряда и разряда составляют 35 мА и 200 мА соответственно, что дает соотношение приблизительно 6: 1.

Верхний порог равен внутреннему опорному напряжению 1.25V, а нижний порог равен примерно 0,75 В. Генератор работает непрерывно со скоростью, регулируемой величиной времени конденсатора. Он также измеряет пиковый ток путем измерения напряжения, генерируемого током индуктивности, на чувствительном резисторе с более высокой номинальной мощностью, подключенном к контакту 7. В этой схеме (рис. 3), резистор 2 Ом с сопротивлением 1,5 Ом R6 является чувствительным резистором.

Читайте также:  Для исследования зависимости силы тока протекающего через проволочный резистор от напряжения

Как показано на блок-схеме, выходным переключателем является транзистор Дарлингтона npn. Коллектор привязан к контакту 1, а эмиттер – к контакту 2. Это позволяет конструктору использовать MC34063 в конфигурации с баком, усилителем или инвертором. Максимальное напряжение насыщения коллектор-эмиттер при 1,5 А (пик) составляет 1,3 В, и максимальный пиковый ток выходного переключателя составляет 1,5 А. Для более высокого пикового выходного тока можно использовать внешний транзистор.

Колебательные импульсы приводят в действие внутренние транзисторы, которые могут использоваться для обеспечения ускоренного / понижающего преобразования или для возбуждения внешнего силового транзистора с более высоким номиналом для получения более высокой номинальной мощности.

В некоторых схемах, в основном с повышением и инвертированием напряжения, отношение тонна / (тонна + ток) должно быть больше 0,857. Это может быть получено путем добавления схемы удлинителя отношения, которая использует германиевый диод и является чувствительной к температуре. Временной конденсатор с отрицательным температурным коэффициентом поможет уменьшить эту чувствительность.

На рис. 3 схема расширителя состоит из транзистора T2 (BC557), германиевого диода D2 (1N34A) и синхронизирующего конденсатора C3. Вот, T2 не управляет ничем иным, как переключателем разряда и зарядки конденсатора C3, питаемым от контакта 3 микросхемы. Ограничение тока должно использоваться во всех повышающих и инвертирующих напряжениях с использованием схемы удлинителя отношения. Это позволяет сбрасывать время индуктивности между циклами перегрузки по току во время первоначального включения питания коммутатора. Когда конденсатор выходного фильтра достигает своего номинального напряжения, контур обратной связи по напряжению управляет регулированием.

В главной цепи между соединением резисторов R1 и R2 и конденсаторами C1 и C2 подключен провод для балансировки заряда в обоих выходных конденсаторах. Только резистор R3, подключенный к выводу 5 MC34063, образует делитель напряжения. Это позволяет сбрасывать время индуктивности между циклами перегрузки по току во время первоначального включения питания коммутатора. Когда конденсатор выходного фильтра достигает своего номинального напряжения, контур обратной связи по напряжению управляет регулированием.

В главной цепи между соединением резисторов R1 и R2 и конденсаторами C1 и C2 подключен провод для балансировки заряда в обоих выходных конденсаторах. Только резистор R3, подключенный к выводу 5 MC34063, образует делитель напряжения. Это позволяет сбрасывать время индуктивности между циклами перегрузки по току во время первоначального включения питания коммутатора. Когда конденсатор выходного фильтра достигает своего номинального напряжения, контур обратной связи по напряжению управляет регулированием. В главной цепи между соединением резисторов R1 и R2 и конденсаторами C1 и C2 подключен провод для балансировки заряда в обоих выходных конденсаторах. Только резистор R3, подключенный к выводу 5 MC34063, образует делитель напряжения.

Програмное обеспечение

Мы разработали служебное программное обеспечение для более быстрого определения значений компонентов для быстрого прототипирования блока питания на основе MC34063. Программа написана с использованием HTML и JavaScript и может быть встроена в систему с установленным PHP. Он работает в среде разработки PHP. HTML – это интерфейсное программное обеспечение, тогда как PHP – это фоновое программное обеспечение. Файл JavaScript проверяет наличие пустых полей в HTML-форме. PHP встроен в веб-сервер. Таким образом, несколько пользователей в сети, например в лаборатории или колледже, могут использовать это программное обеспечение одновременно. Программа разработана с использованием среды IDE NetBeans для PHP.

Скачать исходный код.

Установка программы.

1. Загрузите WampServer (для разработки на локальном хосте) с www. wampserver.com/en/ и IDE NetBeans с сайта https://netbeans.org/features/php/. Установите их на свой ПК с Windows. Установите соответствующее расширение Visual C ++ (здесь VC ++ 2012) перед установкой WampServer, чтобы получить все необходимые файлы dll для бесперебойной работы среды IDE и сервера Apache.

Читайте также:  Знак запрещено осторожно напряжение

2. WampServer работает в фоновом режиме с опцией в онлайн-режиме. Убедитесь, что значок WampServer на панели задач становится зеленым.

3. Создайте папку, скажем, HighVoltage, в папке C: wamp www. Скопируйте файлы изображений HVBoostCalculator.html, HVDesign.js и HVcircuit.jpg в папку проекта.

4. Создайте новый проект PHP в NetBeans. Выберите «Приложение PHP» и нажмите «Далее». Папка проекта будет создана автоматически. Обратите внимание, что ваша папка HighVoltage находится в этой папке проекта.

Скриншот вывода программы

5. Под окном «Run Configuration» выберите опцию «local server» в поле «Run As:». Затем нажмите «ОК», чтобы продолжить. HVBoostCalculator.html – это HTML-скрипт, а его ассоциированное изображение – HVcircuit.jpg. HVDesign.js – это скрипт Javascript. Запустите HVBoost Calculator.html, чтобы получить страницу, как показано на рис. 6. Рис. 6: Снимок экрана с выводом программы для источника питания HVDC.

Сначала необходимо подать на вход постоянного тока 9-12 В и допуск напряжения в зависимости от используемого источника питания; как правило, допуск по напряжению составляет 1%. Затем укажите требуемое выходное напряжение и ток в соответствующих полях формы. (Для более высоких выходных напряжений, пожалуйста, используйте транзистор T1 с более высокими характеристиками напряжения и тока.)

Используя таблицу данных силового транзистора T1, найдите его значение насыщения Vce и ​​поместите в поле формы. Также получите прямое падение напряжения на диоде D1 из его таблицы данных в поле формы. Эти параметры очень важны для расчета значений компонентов. После того, как все значения были заполнены в соответствующих полях, нажмите кнопку «Найти значения компонента». Форма проверяется на наличие пустых полей, а расчет производится для компонентов. Вы получите значения R1 через R3, R6, L1, C1 и C2, а также параметры схемы, такие как рабочий цикл, частота переключения и выходная мощность.

Как показано на скриншоте программы, спроектируйте схему для входного напряжения 12 В постоянного тока, выходного напряжения 500 В постоянного тока, выходного тока 2 мА и синхронизирующего конденсатора 4,4 нФ. На выходе программы вы получаете значения выходного конденсатора 8,20 мкФ, чувствительного резистора R6 1,59 кОм (ближайшее значение 1,50 кОм) и индуктивности L1 6,8 мГн. Полная принципиальная схема этой конструкции показана на рис. 3. чувствительный резистор R6 равен 1,59 Ом (ближайшее значение 1,50 Ом), а индуктор L1 равен 6,8 мГн. Полная принципиальная схема этой конструкции показана на рис. 3. чувствительный резистор R6 равен 1,59 Ом (ближайшее значение 1,50 Ом), а индуктор L1 равен 6,8 мГн. Полная принципиальная схема этой конструкции показана на рис. 3.

Сборка и тестирование

Схема печатных плат фактического размера блока питания HVDC с использованием MC34063 показана на рис. 7, а компоновка его компонентов – на рис. 8. Используйте подходящий радиатор для транзистора T1. Держите индуктор L1 и транзистор T1 подальше от главной цепи. Предпочтительно использовать индуктор экранированного типа для L1. Компоновка печатной платы источника питания постоянного токаРис. 7: Компоновка печатной платы блока питания HVDC Компоновка компонентов для печатной платыРис. 8: Компонентная компоновка платы

Скачать печатную плату и расположение компонентов: нажмите здесь.

R6 должен быть 2 Вт, огнестойкий резистор. Используйте ближайшее значение, данное программой. Используйте надлежащий радиатор для силового транзистора T1. Держите катушку индуктивности L1, транзистор T1 и MC34063 на расстоянии друг от друга, чтобы минимизировать электромагнитные помехи. Для точного значения R3 используйте параллельную комбинацию резисторов. Например, используйте резистор на 6,8 кОм параллельно с резистором на 56 кОм, чтобы получить 6 кОм. Избегайте использования тримпота из-за теплового дрейфа. Используйте конденсатор C3 таким образом, чтобы частота находилась в пределах 10 кГц, чтобы избежать проблем с переключением и нагревом транзистора T1.

Читайте также:  Клемма ваго какое напряжение выдерживает

предосторожность

Обращайтесь с высоковольтной цепью постоянного тока крайне осторожно, так как это может привести к поражению электрическим током.

Источник

Схема высокого напряжения постоянного тока

Умножитель напряжения — схема выпрямителя особого типа, амплитуда напряжение на выходе которой теоретически в целое число раз выше, чем на входе. То есть, с помощью удвоителя напряжения можно получить 200 В постоянного тока из 100 В переменного тока источника, а с помощью умножителя на четыре — 400 В постоянного. Это если не учитывать падение напряжения на диодах (0,7В на каждом).

В реальных схемах любая нагрузка будет уменьшать полученное напряжение. Умножитель содержит в себе конденсаторы и диоды. Нагрузочная способность умножителя пропорциональна частоте, величине емкости входящих в его состав конденсаторов и обратно пропорциональна числу звеньев.

А теперь, к Вашему вниманию — «экспонаты» коллекции:

  • Удвоитель напряжения Латура-Делона-Гренашера

Особенности: хорошая нагрузочная способность.

Несимметричный умножитель напряжения (Кокрофта-Уолтона)

Особенности: универсальность, низкая нагрузочная способность.

Генераторы Кокрофта-Уолтона применяются во многих областях техники, в частности, в лазерных системах, в источниках высокого напряжения, в системах рентгеновского излучения, подсветке жидкокристаллических экранов, лампах бегущей волны, ионных насосах, электростатических системах, ионизаторах воздуха, ускорителях частиц, копировальных аппаратах, осциллографах, телевизорах и во многих других устройствах, где необходимо одновременно высокое напряжение и постоянный ток.

  • Утроитель, 1-й вариант

Особенности: хорошая нагрузочная способность.

Утроитель, 2-й вариант

Особенности: хорошая нагрузочная способность.

Утроитель, 3-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 4, 1-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 4, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 4, 3-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель на 5, 1-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 6, 1-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 6, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель на 8, 1-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 8, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель напряжения Шенкеля – Вилларда

Особенности: симметричная схема, превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене.

Умножитель со ступенчатой нагрузочной способностью

Особенности: нагрузочная характеристика имеет две области — область низкой мощности – в диапазоне выходных напряжений от 2U до U и область повышенной мощности – при выходном напряжении ниже U.

Выпрямитель с вольтодобавкой

Особенности: наличие дополнительного маломощного выхода с удвоенным напряжением питания.

Умножитель из диодных мостов

Особенности: хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.

Источник