Меню

Схема стабилизатора анодного напряжения для лампового усилителя



Анодное питание ламповых усилителей

Постановка задачи

Предпочитаю стабилизировать анодное, чем автосмещение с «нашими» электролитами. Для питания анода ламп обычно нужно стабильной подстраиваемой постоянки (особенно для лофтина) = 300-400 В, 150-220 В с токами (без фанатизма) до 20 и 350-400 мА. Про калориферы – это не здесь. Минимум деталей – не экзотических. И чтобы всё это устойчиво работало, и не спалить лампы превышением тока потребления. И, пожалуй, самое главное – чтобы по деньгам даже пенсионер мог себе это позволить (иногда).

Обуздание потребностей

Посчитайте токи своей схемы и примите коэффициент мощности блока питания не более х2, этого хватит.

Выбор деталей и схемы. Благо ГУГЛ даёт неограниченные (разумные) пределы … полёта фантазии аффтаров , не наткнитесь на Моисеев – да простят меня конфессии. Рекомендую за основу изучить.

Анодное питание ламповых усилителей

Перевод для не желающих читать = получаем приличную стабилизацию фиксированного напряжения вплоть до разумных 450-500 В, выше – пробьёт изоляцию, с неконтролируемыми максимальными токами, зависящими от трансформатора + вставки плавкой + диодов-выпрямителей + радиатора для полевика ну и диаметра жилы Вашей домашней защиты/проводки переменки 220 В.

Почесав покидаемый седыми волосами затылок, принято решение (да простит меня автор):

  1. отказаться от идеи ступенчатого изменения выходного напряжения подстановкой стабилитронов в катод (3) SE;
  2. ввести возможность некоторой подстройки выхода по напряжению;
  3. ввести ограничение/защиту(плавно подстраиваемое) по току = см. «Постановка задачи».

Состав девайса

  1. трансформатор;
  2. защиту от превышения (КЗ) и броска тока по переменке (типа варистор R1 и вставка плавкая FU1);
  3. выпрямитель(желательно на быстрых диодах) ;
  4. сглаживающий С1 (порядка 4 мкФ на 1 Ватт мощности, иначе большая емкость в момент включения «коротит» + диодного моста на корпус со всеми вытекающими…);
  5. ключ VT1 на мощном полевике (с защитой 12 В затвор-исток);
  6. контролёр/усилитель(управляющий мосфетом) ошибки DA1 – выходного напряжения;
  7. плавно подстраиваемый ограничитель тока на VT2, R3,4;
  8. делитель напряжений ОС R5-6-7.

Вот что получилось, пока без расчетных номиналов:

Анодное питание ламповых усилителей

Даташит на SE для расчетов:

Анодное питание ламповых усилителей

«Внутренности» SE для понимания:

Анодное питание ламповых усилителей

Это значит (на схеме уже нанёс):

  1. для нормальной работы SE серии 012-040 напряжение анод-катод (VCGO) должно быть 50 В, для остальных 070-140 = 150 В;
  2. при этом потребляемый ток (Ic) ровно 20 мА, это всё для расчета R2;
  3. ток делителя ОС R5,6,7 около 2 мА из соображений «калорифера»;
  4. напряжение «ограничения тока» = срабатывания VT2 около 0,7 В = это для расчета R3;
  5. «нормальное-рабочее» падение напряжения (разница входного и выходного для полевика) должно быть более 8 В, его превышение, помноженное на ток девайса, и есть нагрев полевика.

Арифметика (начальная школа)

ПРИМЕР 1:

Выход нужен = 144 В не более 20 мА, вход 155 В (такой трансформатор). У меня есть SE103N.

R2 = (вход 155 В – рабочее SE 150 В)/ток SE 0,02 А = 250 Ом, мощность на нём = 5х0,02 = 0,1.

R5+R6+R7 = выход 144 В/ток делителя 0,002 = 72 кОм.

R7 + 1/2R6 = рабочее SE 103 В/ток делителя 0,002 = 51,5 кОм, примем % регулировки около 10, значит 72х10% = 7,2 кОм.

R7= 51,5 – 7,2 = 44,3 кОм = 43 кОм.

R6 около 10-12 кОм.

R5 остается 72-43-12 = 17 кОм = 18 кОм, мощность на всех R5, R6, R7 = 144х0,002 = 0,288 Вт.

R3 = порог VT2 0,7 В/ограничение 0,02 А = 35 Ом(необходимо учесть номинал R4), это значит при таком сопротивлении (движок R4 влево = Uke = максимум) девайс будет ограничивать ток до 20 мА, движок вправо – меньше «сопротивление/напряжение» = нужен больший ток для ограничения = увеличение тока ограничения.

ПРИМЕР 2:

Выход нужен 215 В не более 350 мА, вход 250 В, есть SE 130. Просто цифры, для простоты и исключения ошибки распечатываю голую схему + подписываю ДАНО и нажимаю кнопки на логарифмической линейке.

R2 = (250-150)/0,02 = 5000, мощность = (250-150)х0,02 = 2 Вт .

R5, R6, R7 = 215/0,002 = 107500

R7 + 1/2R6 = 130/0,002 = 65000

R6 = 65000×10% = 6500

R5 = 107500 – 65000 – 6500 = 36000

Мощность R5, R6, R7 = 215×0,002 = 0,43 Вт

R3 = 0,7/0,35 = 2 Ом

ВАЖНО! Замеряйте падение напряжения на ключе-полевике и перемножьте его на нужный Вам ток = не забудьте про небольшой радиатор. Дальнейшее объяснение считаю «разжёвывание пальцев» как сказал мой наставник.

Проверено, работает! Возможны опечатки, спасибо за корректировку. Всем удачи.

Источник

Схема стабилизатора анодного напряжения для лампового усилителя

Автор: El-Eng
Опубликовано 22.08.2012
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2012!»

Разработчики ламповых усилителей зачастую пренебрегают теми возможностями, которые предоставляют современная элементная база и современная схемотехника. Борясь за чистоту «лампового звука» они признают достойными внимания только те схемные решения, которые использовались в эпоху расцвета ламп. В предлагаемом вашему вниманию усилителе реализован совершенно иной подход: усиление переменного сигнала осуществляется классическими ламповыми каскадами, а режимы работы ламп по постоянному току задаются современными активными компонентами с применением современных схемотехнических методов. Такой подход позволил сохранить особенности воспроизведения звука, присущие ламповому усилителю, и обеспечил отсутствие зависимости режимов работы от параметров отдельных экземпляров ламп и дрейфа этих параметров.
Описываемый усилитель предназначен для прослушивания музыки во время работы за компьютером. Его также можно использовать в качестве усилителя для стереонаушников. Усилитель построен на триодах, его выходная мощность — 2.5Вт, а полоса усиливаемых частот — 25Гц…25кГц. Коэффициент нелинейных искажений не превышает 0.3% при выходной мощности 250 мВт.

Прежде чем перейти к описанию устройства, сделаю необходимое предупреждение:

Внимание! Данное устройство использует опасные для жизни напряжения и предназначено для повторения только достаточно опытными радиолюбителями. Автор не несет никакой ответственности за последствия, наступившие в результате повторения этого устройства или его отдельных частей.

Выбор ламповых триодов в качестве усилительных элементов был обусловлен желанием построить наиболее классический вариант лампового усилителя. С этой же целью было решено отказаться от применения отрицательной обратной связи в выходном каскаде. Вначале, усилитель предполагалось сделать однотактным, но наличие достаточно мощных сдвоенных триодов и меньший коэффициент нелинейных искажений двухтактного выходного каскада определили окончательный выбор в его пользу.

Читайте также:  Получить постоянный ток от источника напряжения

Принципиальная схема одного из каналов усилителя (левого) представлена на рисунке:


Усилитель имеет два каскада предварительного усиления (усилитель напряжения и фазоинвертор) и выходной каскад. Усилитель напряжения реализован на триоде VL1A (половина лампы 6Н2П, другая половина используется в правом канале) по известной схеме, с тем отличием, что ток катода задан источником тока на транзисторе Q1 и не зависит от параметров лампы. Легко видеть, что напряжение на аноде также не зависит от параметров используемой лампы. Таким образом, триод находится в фиксированном режиме работы по постоянному току.
Фазоинвертор выполнен на триоде VL2A (половина лампы 6Н23П, другая половина также используется в правом канале) по схеме с разделенной нагрузкой и непосредственной связью с первым каскадом. Режим работы этого триода также задан источником тока. Этот источник тока построен с применением микросхемы TL431 (U2), которая поддерживает постоянным падение напряжения на резисторе R15, стабилизируя ток эмиттера, а, следовательно (с учетом погрешности, вызванной базовым током), и ток коллектора транзистора Q2. Транзистор Q1 подключен к транзистору Q2 по схеме токового зеркала.
Посредством цепи C2, R4, R9, C6, предварительный усилитель охвачен неглубокой ООС с целью стабилизации величины усиления с обеспечением возможности её подстройки (при помощи переменного резистора R9) и снижения нелинейных искажений. Следует отметить, что действие этой ООС сохраняется даже тогда, когда выходной каскад оказывается в режиме перегрузки, поэтому ООС не оказывает негативного влияния на воспроизведение звукового сигнала.
Выходной двухтактный каскад также выполнен по известной схеме, но рабочий ток этого каскада задан источником тока на микросхеме U1. Этот каскад работает в режиме A, вместе с тем, сравнительно большое значение ёмкости конденсатора C5, шунтирующего источник тока по переменному напряжению, позволяет выходному каскаду короткое время (несколько миллисекунд) работать в режиме AB, что благоприятно сказывается на воспроизведении коротких пиков музыкального сигнала. Стабилитрон D1 защищает микросхему U1 от возможных перенапряжений.

Питание усилителя осуществляется от стабилизатора напряжения, в котором реализована задержка включения, необходимая для предварительного прогрева ламп с целью продления их срока службы. В то же время, подача анодного напряжения на прогретые лампы усилителя приводит к одному неприятному эффекту, которому, как правило, не уделяют достаточного внимания. Дело в том, что первоначальный заряд разделительных конденсаторов, установленных в цепи управляющих сеток ламп выходного каскада, вызывает скачок напряжения на этих сетках, что, в свою очередь, приводит к броску тока через эти лампы. Ситуация усугубляется тем, что шунтирующая емкость в цепи катодов этих ламп также разряжена в момент подачи анодного напряжения.
Для минимизации влияния данного эффекта, в описываемом усилителе применено устройство защиты, реализованное на элементах D2-D6, R16, R17 и C11. В первый момент после включения питания, конденсатор C11 разряжен, поэтому заряд разделительных конденсаторов, в основном, происходит через диоды D2, D3, D5, D6, что существенно снижает амплитуду скачка напряжения на сетках. В дальнейшем, конденсатор заряжается до напряжения, определяемого делителем R16-R17, диоды закрываются, и устройство не влияет на работу усилителя. Диод D4 нужен для ускорения разряда конденсатора C11 при выключении питания.

Выходной трансформатор изготовлен на сердечнике от трансформатора кадровой развертки ТВК110-ЛМ. Первичная обмотка трансформатора имеет две соединенные последовательно секции по 2184 витка провода ПЭВТЛ-1 диаметром 0.14 мм. Вторичная обмотка, для номинальной нагрузки 6 Ом, имеет две соединенные последовательно секции по 42 витка провода ПЭВ-1 диаметром — 0.64 мм.
Считается, что намотка выходного трансформатора вызывает наибольшую трудность при изготовлении лампового усилителя. Выходной трансформатор описываемого усилителя имеет конструкцию, существенно снижающую трудоёмкость его изготовления. Каркас катушки изготовлен из стеклотекстолита толщиной 1.0 мм. Катушка разделена посередине на две части дополнительной перегородкой, имеющей сквозной паз. Расположение обмоток на каркасе схематично показано на рисунке:


Красным показано расположение секций вторичной обмотки, а синим – первичной. Разным наклоном штриховки отмечено разное направление намотки при изготовлении обмотки трансформатора.

Намотку катушек трансформатора начинают с первой секции вторичной обмотки. Диаметр провода выбран таким образом, чтобы секция уложилась в один слой. При намотке секции, 21 виток укладывают в одной части катушки, а ещё 21 – в другой, пропустив провод в паз центральной перегородки. После этого, обмотку тщательно изолируют (я использовал комбинацию из сантехнической фум-ленты и пленки от «рукава для запекания» фирмы Paclan), и приступают к намотке первой секции первичной обмотки (2184 витка). Она наматывается внавал в одной половине катушки без каких-либо прокладок. Намотка должна быть максимально плотной, необходимо следить, чтобы при намотке витки не проваливались внутрь катушки (особенно часто это случается у её краев). Далее, таким же образом, на второй половине катушки наматывают вторую секцию первичной обмотки (2184 витка). Направление намотки должно быть противоположным по отношению к первой секции для того, чтобы средняя точка обмотки получалась соединением расположенных ближе к сердечнику выводов обеих секций. После изоляции первичной обмотки наматывают оставшуюся секцию вторичной обмотки. Направление намотки также должно быть противоположным по отношению к первой секции, для того, чтобы полная вторичная обмотка получалась соединением выводов, расположенных с одной стороны катушки. Готовая катушка обматывается снаружи фум-лентой и защищается слоем малярного скотча. После этого трансформатор собирается, и сердечник стягивается для обеспечения отсутствия зазора между его частями.

Особенностями воспроизведения звука в условиях, для которых предназначен данный усилитель, являются близость точки прослушивания к источнику звука и, как правило, окружающая тишина. Эти особенности налагают повышенные требования к уровню фона переменного тока. Чтобы гарантировать минимальный фон, в усилителе применен стабилизированный блок питания, принципиальная схема которого приведена ниже:

Блок питания обеспечивает переменное напряжение накала 6.3В, содержит стабилизированный источник напряжения -5В и стабилизированный источник анодного напряжения +300В, который опишу более подробно.

Читайте также:  Наибольшее длительно допустимое рабочее напряжение сети

Прототипом стабилизатора анодного напряжения является разработанный Евгением Карповым “Простой высоковольтный стабилизатор”. По сравнению с прототипом, схема существенно переработана с целью увеличения коэффициента стабилизации и повышения устойчивости стабилизатора. Кроме того в нем реализована задержка подачи выходного напряжения, а защита от перегрузки и короткого замыкания имеет спадающую выходную характеристику.
Основой стабилизатора является микросхема TL431 (U1), сигнал с которой передается на регулирующий транзистор Q2 посредством усилительного каскада с общей базой (Q5). Нагрузкой этого каскада служит источник тока на транзисторе Q4, это обеспечивает повышенный коэффициент усиления каскада, что способствует увеличению коэффициента стабилизации. Кроме того, пульсации выпрямленного напряжения не проникают в цепь управления регулирующим элементом, что также способствует снижению их уровня. Цепочка C5-R13 обеспечивает частотную коррекцию этого каскада. Посредством конденсатора C4 осуществляется общая коррекция частотной характеристики стабилизатора.
Защита от перегрузки и короткого замыкания работает следующим образом. При нормальной работе транзистор Q1 открыт и на базе транзистора Q3 формируется напряжение, вызванное протеканием тока нагрузки через параллельное соединение резисторов R2 и R8. Когда, при увеличении тока нагрузки, это напряжение достигнет величины примерно 0.6В (при указанных номиналах, ток должен быть около 120мА), транзистор Q3 начнет открываться, шунтируя напряжение на затворе регулирующего транзистора Q2. Схема перейдет в режим ограничения тока, и, при дальнейшем уменьшении сопротивления нагрузки, напряжение на выходе будет уменьшаться. Вследствие этого, в определённый момент, транзистор Q1 закроется, и напряжение на базе транзистора Q3 станет определяться протеканием тока только через резистор R8, что приведет к уменьшению величины ограничиваемого тока (примерно до 60мА). Значение этого тока сохранится вплоть до короткого замыкания в нагрузке.
Транзистор Q6, конденсатор C7 и резистор R16 образуют узел задержки подачи выходного напряжения. В первый момент после включения питания, конденсатор C7 разряжен и на эмиттере транзистора Q5, транзистором Q6, поддерживается напряжение около 0.7В. Транзистор Q5 переходит в режим насыщения, и напряжение на выходе стабилизатора поддерживается на уровне около 0В. По мере заряда конденсатора C7 через резистор R16, напряжение на эмиттере транзистора Q5 возрастает, и, в определенный момент, он выходит из насыщения, стабилизатор включается, и напряжение на выходе плавно достигает требуемого значения. Дальнейший рост напряжения на конденсаторе C7 полностью закрывает транзистор Q6 и в дальнейшей работе стабилизатора он не участвует. Время задержки при указанных номиналах – около 40 секунд. После выключения питания, работоспособность устройства задержки восстанавливается постепенно, по мере разряда конденсатора C7, поэтому задержка не происходит при кратковременном пропадании питания.
Для обеспечения нормальной работы стабилизатора, регулирующий транзистор Q2 необходимо разместить на теплоотводе. На него, также, желательно поместить транзистор Q5.

Электронные компоненты и схемные решения, примененные в усилителе, обеспечивают его работу в заранее заданном режиме. Как собственно усилитель, так и блок питания не требуют наладки, и, при условии исправных компонентов и отсутствии ошибок монтажа, начинают работать сразу после включения. Единственное, что может потребоваться, это установка величины усиления канала.
Тем не менее, проверку работоспособности усилителя следует выполнять в определённой последовательности. Прежде всего, необходимо убедиться в отсутствии ошибок монтажа. До первого включения устройства его необходимо отмыть от остатков флюса. Печатные платы рекомендуется покрыть одним слоем лака Plastik фирмы Cramolin. Это убережет от образования проводящих мостиков между дорожками платы, возникающими из-за пониженного поверхностного сопротивления текстолита, вызванного остатками хлорного железа, активного флюса и т.д. Первое включение любого высоковольтного устройства следует проводить, находясь на некотором расстоянии от него: некачественные компоненты, особенно конденсаторы, представляют реальную опасность.
Сначала проверяют работоспособность блока питания: подключив его к сети, убеждаются в отсутствии “пиротехнических эффектов”. Следует помнить, что вследствие работы узла задержки, выходное напряжение высоковольтного стабилизатора подается примерно через 40 секунд после включения блока питания. Если необходимо, узел задержки можно временно отключить, отсоединив от схемы эмиттер транзистора Q6. После выхода стабилизатора в рабочий режим, убеждаются в отсутствии самовозбуждения (это удобно делать в точке соединения резисторов R12, R14 и конденсатора C4, осциллограф должен использоваться с щупом-делителем на 10) и проверяют выходное напряжение (его величину можно подстроить резистором R14). После этого проверяют наличие напряжения -5В и переменного напряжения 6.3В.
Проверку работоспособности усилителя начинают с каскадов предварительного усиления, лампу VL3 не устанавливают в панель. После подачи питания, проверяют падение напряжения на резисторах R14 и R15, оно должно быть около 2.5В. Падение напряжения на резисторе R1 должно быть около 170В, а на резисторах R2 и R5 — около 40В. Работу предварительного усилителя можно проверить, подав на вход переменный сигнал, при этом на выходах должны появиться усиленные сигналы, находящиеся в противофазе.
После проверки работы предварительного усилителя, питание отключают и устанавливают лампу VL3. Подав питание, проверяют падение напряжения на резисторе R13, оно должно быть около 1.25В. Напряжение на катодах лампы VL3 не должно превышать 20В.
Убедившись в работоспособности усилителя, при помощи переменного резистора R9, устанавливают необходимое усиление канала, им же осуществляют балансировку каналов.

Усилитель собран в корпусе от компьютерного блока питания, а в качестве лицевой панели использована пластмассовая деталь от лотка подачи бумаги струйного принтера Epson. Установленный на верхней части корпуса небольшой вентилятор обеспечивает циркуляцию воздуха внутри корпуса.


Чертеж печатных плат усилителя не приводится, поскольку значительная часть соединений выполнена объемным монтажом.

В рамках статьи невозможно предусмотреть ответы на все вопросы, которые могут возникнуть у тех, кто заинтересуется данной конструкцией, поэтому с вопросами обращайтесь сюда.

Источник

Высоковольтный выпрямитель и стабилизатор для лампового УМЗЧ

Если не принимать во внимание идеологические соображения, то стабилизатор анодного напряжения усилителя мощности звуковой частоты (УМЗЧ) на радиолампах дает много преимуществ при конструировании – экономия пространства и массы по сравнению с конденсаторно-дроссельным фильтром сравнимых способностей, лампы можно безопасно использовать в режимах близких к критическим, существенное снижение фона, независимость от обычных капризов неважной (например деревенской) осветительной сети.

Читайте также:  Хендай санта фе регулятор напряжения

Здесь, стабилизированный источник анодного напряжения (+250 В) лампового усилителя на 4-х 6С19П выполнен на стандартном трансформаторе ТА251 с раздельными для каждого канала выпрямителями и стабилизаторами. Выпрямители «твердотельные» мостовые, на быстрых диодах шунтированных пленочными конденсаторами для нейтрализации «ненулевого времени рассасывания зарядов при их переключении». Стабилизаторы на высоковольтных полевых транзисторах с изолированными затворами. Применен компактный печатный монтаж и элементы широкого применения. Два выпрямителя и два стабилизатора смонтированы на небольшой печатной плате привинченной к спине игольчатого радиатора. На обратной стороне платы, со стороны печатного монтажа смонтированы и регулирующие элементы – полевые транзисторы. Они прижимаются к радиатору через изолирующие слюдяные прокладки при установке платы. Выводы стабилизаторов и выпрямителей смонтированы с учетом ее установки – только со стороны установки деталей. В целом, получилось вполне удобно.

Схема электрическая принципиальная выпрямителя и стабилизатора одного канала, ниже.

Высоковольтный выпрямитель и стабилизатор для лампового УМЗЧ

На схеме не показаны конденсаторы шунтирующие диоды выпрямительного моста, подбором напряжения и количества стабилитронов D1…D3 устанавливаем напряжение на выходе стабилизатора. Напряжения оксидных конденсаторов должны соответствовать действующим в схеме. Транзистор Т2 защищает регулирующий от перегрузок и замыканий, R6 разряжает конденсаторы выключенного прибора (полностью

1 мин). Регулирующий транзистор можно заменить на подходящий по напряжению IRF.

Что было использовано для работы.

Набор инструментов и материалов для разработки и изготовления печатной платы (ПП), набор инструментов для радиомонтажа, нечто для сверления (станок, дрель), в том числе и для отверстий на ПП (0,5…1,5 мм). Набор инструмента для нарезания резьбы М3, радиоэлементы, мелочи.

Разработка платы.

Применение печатного монтажа в высококачественном УМЗЧ не желательно – увеличивается количество паек каждая из которых чуточку ухудшает результат – ясность звучания прибора. Если в транзисторных схемах это затруднительно, то в лаконичных ламповых схемах вполне возможно, более того удобно. Здесь, много установочных элементов закрепляемых на шасси. Большая часть мелких элементов преотлично монтируется на их лепестках и жестких выводах. Такой объемный монтаж был очень распространен в эпоху ранней ламповой электроники, а печатный вытеснил его как более технологичный в изготовлении, компактный и ремонтопригодный.

ПП получилась весьма простой и без SMD элементов, при ее изготовлении применен ручной способ нанесения лакового защитного рисунка – старым добрым рейсфедером.

Заготовка для ПП нашлась только с двухсторонним фольгированием. Лишний слой снял пинцетом прогрев его строительным феном. Клей при этом размягчается.

Зеркальный рисунок разработанной ПП напечатал на принтере, вырезал его ножницами, оставив со всех сторон широкие лепестки. Они загибаются на обратную сторону заготовки ПП и закрепляются липкой лентой. Центры отверстий накерниваются, бумага снимается, плата сверлится и зачищается.

Рисунок дорожек нанес традиционным битумным лаком, стеклянным (широкие дорожки, большие расстояния между отверстиями) рейсфедером. После высыхания лака рисунок ретушировал шилом и привязав тонкую медную проволочку положил в кювету для травления. Готовый раствор хлорного железа хранится в полиэтиленовом пищевом контейнере с герметической крышкой. Небольшие платы можно травить прямо в нем.

Плату помещаю медью ко дну, приподнятую доставательной проволочкой за один край. Таким образом, продукты реакции не скапливаются на поверхности меди и не замедляют процесс. Травление идет весьма быстро без всяких покачиваний и взбалтываний. Единственный момент – шлам может накопиться на дне, тогда его слой замедляет травление нижнего конца платы. Выход – периодически избавляться от осадка, обновлять раствор.

Для подогрева раствора поставил кювету-контейнер на остывающую дровяную плиту.

Вытравленную ПП отмыл ацетоном от лака, слегка зачистил и залудил дорожки, приступил к монтажу элементов.

Элементы были использованы не новые, пришлось каждый проверять, к счастью их не много. Использовал китайский приборчик, низковольтные стабилитроны удобно проверить на стационарном БП.

Конденсаторы шунтирующие диоды выпрямительного моста нахлобучил поверх них, выводы для подключения переменного напряжения сделал из нетонкой луженой проволоки.

Регулирующий транзистор расположен спиной к радиатору с обратной стороны платы, ось отверстий для винтов М3 проходит через середину пластиковой части транзистора.

Устанавливаемые торчком резисторы не только экономят место на плате, но и предоставляют удобные выводы для подключения внешних проводов, особенно полезных при отсутствии удобного доступа к дорожкам. Например, на фото выше стрелочкой показан вывод платы «+ Ua». У 2 Вт резисторов МЛТ штатные проволочные выводы коротковаты для такого монтажа – верхний приходится наращивать нетонкой луженной проволокой, у импортных выводы длиннее, хватает и своих. Белые керамические резисторы – датчик тока R5, составлен из 2х3,3 Ом.

Собранная плата запитана от трансформатора ТАН30. Обнаружилось интересное – выходное напряжение скачет резвым козленком, запросто может прыгнуть на 4 вольта вне зависимости от изменений в сети. Однако. Обычно стабилизатор являл собой полнейшее хладнокровие и невозмутимость. Осциллограф показал нечто любопытное на выходе. Самовозбуждение?

Причина нашлась не сразу и по наитию – главным злодеем оказался сетевой паяльник 40 Вт включенный через осветительный диммер (для регулировки температуры). Его нагревательная, но все-же обмотка (фактически — катушка индуктивности) излучала. Неудачная (удачная) топология ПП сработала как рамочная антенна и получился радиоприемник с передатчиком. В лучшем виде.

Достаточно было разорвать рамку антенны – удалить часть «земляной» печатной дорожки (по контуру коротких сторон ПП) и все встало на свои места – стабилизатор стал вести себя прилично, выходное напряжение изменяется только на десятые вольта при колебаниях в сети, наводка от паяльника радикально уменьшилась.

Луженые дорожки перерезал бормашинкой и оторвал поддев конец лезвием ножа.

Вот что у меня получилось при близком поднесении паяльника (печатный монтаж уже исправлен). Кроме того, стабилизатор в готовой конструкции будет находиться в металлическом кожухе, суть — экране.

Источник