Меню

Схема стабилизатор анодного напряжения для лампового усилителя схема



Схема стабилизатор анодного напряжения для лампового усилителя схема

Автор: El-Eng
Опубликовано 22.08.2012
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2012!»

Разработчики ламповых усилителей зачастую пренебрегают теми возможностями, которые предоставляют современная элементная база и современная схемотехника. Борясь за чистоту «лампового звука» они признают достойными внимания только те схемные решения, которые использовались в эпоху расцвета ламп. В предлагаемом вашему вниманию усилителе реализован совершенно иной подход: усиление переменного сигнала осуществляется классическими ламповыми каскадами, а режимы работы ламп по постоянному току задаются современными активными компонентами с применением современных схемотехнических методов. Такой подход позволил сохранить особенности воспроизведения звука, присущие ламповому усилителю, и обеспечил отсутствие зависимости режимов работы от параметров отдельных экземпляров ламп и дрейфа этих параметров.
Описываемый усилитель предназначен для прослушивания музыки во время работы за компьютером. Его также можно использовать в качестве усилителя для стереонаушников. Усилитель построен на триодах, его выходная мощность — 2.5Вт, а полоса усиливаемых частот — 25Гц…25кГц. Коэффициент нелинейных искажений не превышает 0.3% при выходной мощности 250 мВт.

Прежде чем перейти к описанию устройства, сделаю необходимое предупреждение:

Внимание! Данное устройство использует опасные для жизни напряжения и предназначено для повторения только достаточно опытными радиолюбителями. Автор не несет никакой ответственности за последствия, наступившие в результате повторения этого устройства или его отдельных частей.

Выбор ламповых триодов в качестве усилительных элементов был обусловлен желанием построить наиболее классический вариант лампового усилителя. С этой же целью было решено отказаться от применения отрицательной обратной связи в выходном каскаде. Вначале, усилитель предполагалось сделать однотактным, но наличие достаточно мощных сдвоенных триодов и меньший коэффициент нелинейных искажений двухтактного выходного каскада определили окончательный выбор в его пользу.

Принципиальная схема одного из каналов усилителя (левого) представлена на рисунке:


Усилитель имеет два каскада предварительного усиления (усилитель напряжения и фазоинвертор) и выходной каскад. Усилитель напряжения реализован на триоде VL1A (половина лампы 6Н2П, другая половина используется в правом канале) по известной схеме, с тем отличием, что ток катода задан источником тока на транзисторе Q1 и не зависит от параметров лампы. Легко видеть, что напряжение на аноде также не зависит от параметров используемой лампы. Таким образом, триод находится в фиксированном режиме работы по постоянному току.
Фазоинвертор выполнен на триоде VL2A (половина лампы 6Н23П, другая половина также используется в правом канале) по схеме с разделенной нагрузкой и непосредственной связью с первым каскадом. Режим работы этого триода также задан источником тока. Этот источник тока построен с применением микросхемы TL431 (U2), которая поддерживает постоянным падение напряжения на резисторе R15, стабилизируя ток эмиттера, а, следовательно (с учетом погрешности, вызванной базовым током), и ток коллектора транзистора Q2. Транзистор Q1 подключен к транзистору Q2 по схеме токового зеркала.
Посредством цепи C2, R4, R9, C6, предварительный усилитель охвачен неглубокой ООС с целью стабилизации величины усиления с обеспечением возможности её подстройки (при помощи переменного резистора R9) и снижения нелинейных искажений. Следует отметить, что действие этой ООС сохраняется даже тогда, когда выходной каскад оказывается в режиме перегрузки, поэтому ООС не оказывает негативного влияния на воспроизведение звукового сигнала.
Выходной двухтактный каскад также выполнен по известной схеме, но рабочий ток этого каскада задан источником тока на микросхеме U1. Этот каскад работает в режиме A, вместе с тем, сравнительно большое значение ёмкости конденсатора C5, шунтирующего источник тока по переменному напряжению, позволяет выходному каскаду короткое время (несколько миллисекунд) работать в режиме AB, что благоприятно сказывается на воспроизведении коротких пиков музыкального сигнала. Стабилитрон D1 защищает микросхему U1 от возможных перенапряжений.

Питание усилителя осуществляется от стабилизатора напряжения, в котором реализована задержка включения, необходимая для предварительного прогрева ламп с целью продления их срока службы. В то же время, подача анодного напряжения на прогретые лампы усилителя приводит к одному неприятному эффекту, которому, как правило, не уделяют достаточного внимания. Дело в том, что первоначальный заряд разделительных конденсаторов, установленных в цепи управляющих сеток ламп выходного каскада, вызывает скачок напряжения на этих сетках, что, в свою очередь, приводит к броску тока через эти лампы. Ситуация усугубляется тем, что шунтирующая емкость в цепи катодов этих ламп также разряжена в момент подачи анодного напряжения.
Для минимизации влияния данного эффекта, в описываемом усилителе применено устройство защиты, реализованное на элементах D2-D6, R16, R17 и C11. В первый момент после включения питания, конденсатор C11 разряжен, поэтому заряд разделительных конденсаторов, в основном, происходит через диоды D2, D3, D5, D6, что существенно снижает амплитуду скачка напряжения на сетках. В дальнейшем, конденсатор заряжается до напряжения, определяемого делителем R16-R17, диоды закрываются, и устройство не влияет на работу усилителя. Диод D4 нужен для ускорения разряда конденсатора C11 при выключении питания.

Выходной трансформатор изготовлен на сердечнике от трансформатора кадровой развертки ТВК110-ЛМ. Первичная обмотка трансформатора имеет две соединенные последовательно секции по 2184 витка провода ПЭВТЛ-1 диаметром 0.14 мм. Вторичная обмотка, для номинальной нагрузки 6 Ом, имеет две соединенные последовательно секции по 42 витка провода ПЭВ-1 диаметром — 0.64 мм.
Считается, что намотка выходного трансформатора вызывает наибольшую трудность при изготовлении лампового усилителя. Выходной трансформатор описываемого усилителя имеет конструкцию, существенно снижающую трудоёмкость его изготовления. Каркас катушки изготовлен из стеклотекстолита толщиной 1.0 мм. Катушка разделена посередине на две части дополнительной перегородкой, имеющей сквозной паз. Расположение обмоток на каркасе схематично показано на рисунке:

Читайте также:  Синусоидальное напряжение амплитудное напряжение


Красным показано расположение секций вторичной обмотки, а синим – первичной. Разным наклоном штриховки отмечено разное направление намотки при изготовлении обмотки трансформатора.

Намотку катушек трансформатора начинают с первой секции вторичной обмотки. Диаметр провода выбран таким образом, чтобы секция уложилась в один слой. При намотке секции, 21 виток укладывают в одной части катушки, а ещё 21 – в другой, пропустив провод в паз центральной перегородки. После этого, обмотку тщательно изолируют (я использовал комбинацию из сантехнической фум-ленты и пленки от «рукава для запекания» фирмы Paclan), и приступают к намотке первой секции первичной обмотки (2184 витка). Она наматывается внавал в одной половине катушки без каких-либо прокладок. Намотка должна быть максимально плотной, необходимо следить, чтобы при намотке витки не проваливались внутрь катушки (особенно часто это случается у её краев). Далее, таким же образом, на второй половине катушки наматывают вторую секцию первичной обмотки (2184 витка). Направление намотки должно быть противоположным по отношению к первой секции для того, чтобы средняя точка обмотки получалась соединением расположенных ближе к сердечнику выводов обеих секций. После изоляции первичной обмотки наматывают оставшуюся секцию вторичной обмотки. Направление намотки также должно быть противоположным по отношению к первой секции, для того, чтобы полная вторичная обмотка получалась соединением выводов, расположенных с одной стороны катушки. Готовая катушка обматывается снаружи фум-лентой и защищается слоем малярного скотча. После этого трансформатор собирается, и сердечник стягивается для обеспечения отсутствия зазора между его частями.

Особенностями воспроизведения звука в условиях, для которых предназначен данный усилитель, являются близость точки прослушивания к источнику звука и, как правило, окружающая тишина. Эти особенности налагают повышенные требования к уровню фона переменного тока. Чтобы гарантировать минимальный фон, в усилителе применен стабилизированный блок питания, принципиальная схема которого приведена ниже:

Блок питания обеспечивает переменное напряжение накала 6.3В, содержит стабилизированный источник напряжения -5В и стабилизированный источник анодного напряжения +300В, который опишу более подробно.

Прототипом стабилизатора анодного напряжения является разработанный Евгением Карповым “Простой высоковольтный стабилизатор”. По сравнению с прототипом, схема существенно переработана с целью увеличения коэффициента стабилизации и повышения устойчивости стабилизатора. Кроме того в нем реализована задержка подачи выходного напряжения, а защита от перегрузки и короткого замыкания имеет спадающую выходную характеристику.
Основой стабилизатора является микросхема TL431 (U1), сигнал с которой передается на регулирующий транзистор Q2 посредством усилительного каскада с общей базой (Q5). Нагрузкой этого каскада служит источник тока на транзисторе Q4, это обеспечивает повышенный коэффициент усиления каскада, что способствует увеличению коэффициента стабилизации. Кроме того, пульсации выпрямленного напряжения не проникают в цепь управления регулирующим элементом, что также способствует снижению их уровня. Цепочка C5-R13 обеспечивает частотную коррекцию этого каскада. Посредством конденсатора C4 осуществляется общая коррекция частотной характеристики стабилизатора.
Защита от перегрузки и короткого замыкания работает следующим образом. При нормальной работе транзистор Q1 открыт и на базе транзистора Q3 формируется напряжение, вызванное протеканием тока нагрузки через параллельное соединение резисторов R2 и R8. Когда, при увеличении тока нагрузки, это напряжение достигнет величины примерно 0.6В (при указанных номиналах, ток должен быть около 120мА), транзистор Q3 начнет открываться, шунтируя напряжение на затворе регулирующего транзистора Q2. Схема перейдет в режим ограничения тока, и, при дальнейшем уменьшении сопротивления нагрузки, напряжение на выходе будет уменьшаться. Вследствие этого, в определённый момент, транзистор Q1 закроется, и напряжение на базе транзистора Q3 станет определяться протеканием тока только через резистор R8, что приведет к уменьшению величины ограничиваемого тока (примерно до 60мА). Значение этого тока сохранится вплоть до короткого замыкания в нагрузке.
Транзистор Q6, конденсатор C7 и резистор R16 образуют узел задержки подачи выходного напряжения. В первый момент после включения питания, конденсатор C7 разряжен и на эмиттере транзистора Q5, транзистором Q6, поддерживается напряжение около 0.7В. Транзистор Q5 переходит в режим насыщения, и напряжение на выходе стабилизатора поддерживается на уровне около 0В. По мере заряда конденсатора C7 через резистор R16, напряжение на эмиттере транзистора Q5 возрастает, и, в определенный момент, он выходит из насыщения, стабилизатор включается, и напряжение на выходе плавно достигает требуемого значения. Дальнейший рост напряжения на конденсаторе C7 полностью закрывает транзистор Q6 и в дальнейшей работе стабилизатора он не участвует. Время задержки при указанных номиналах – около 40 секунд. После выключения питания, работоспособность устройства задержки восстанавливается постепенно, по мере разряда конденсатора C7, поэтому задержка не происходит при кратковременном пропадании питания.
Для обеспечения нормальной работы стабилизатора, регулирующий транзистор Q2 необходимо разместить на теплоотводе. На него, также, желательно поместить транзистор Q5.

Электронные компоненты и схемные решения, примененные в усилителе, обеспечивают его работу в заранее заданном режиме. Как собственно усилитель, так и блок питания не требуют наладки, и, при условии исправных компонентов и отсутствии ошибок монтажа, начинают работать сразу после включения. Единственное, что может потребоваться, это установка величины усиления канала.
Тем не менее, проверку работоспособности усилителя следует выполнять в определённой последовательности. Прежде всего, необходимо убедиться в отсутствии ошибок монтажа. До первого включения устройства его необходимо отмыть от остатков флюса. Печатные платы рекомендуется покрыть одним слоем лака Plastik фирмы Cramolin. Это убережет от образования проводящих мостиков между дорожками платы, возникающими из-за пониженного поверхностного сопротивления текстолита, вызванного остатками хлорного железа, активного флюса и т.д. Первое включение любого высоковольтного устройства следует проводить, находясь на некотором расстоянии от него: некачественные компоненты, особенно конденсаторы, представляют реальную опасность.
Сначала проверяют работоспособность блока питания: подключив его к сети, убеждаются в отсутствии “пиротехнических эффектов”. Следует помнить, что вследствие работы узла задержки, выходное напряжение высоковольтного стабилизатора подается примерно через 40 секунд после включения блока питания. Если необходимо, узел задержки можно временно отключить, отсоединив от схемы эмиттер транзистора Q6. После выхода стабилизатора в рабочий режим, убеждаются в отсутствии самовозбуждения (это удобно делать в точке соединения резисторов R12, R14 и конденсатора C4, осциллограф должен использоваться с щупом-делителем на 10) и проверяют выходное напряжение (его величину можно подстроить резистором R14). После этого проверяют наличие напряжения -5В и переменного напряжения 6.3В.
Проверку работоспособности усилителя начинают с каскадов предварительного усиления, лампу VL3 не устанавливают в панель. После подачи питания, проверяют падение напряжения на резисторах R14 и R15, оно должно быть около 2.5В. Падение напряжения на резисторе R1 должно быть около 170В, а на резисторах R2 и R5 — около 40В. Работу предварительного усилителя можно проверить, подав на вход переменный сигнал, при этом на выходах должны появиться усиленные сигналы, находящиеся в противофазе.
После проверки работы предварительного усилителя, питание отключают и устанавливают лампу VL3. Подав питание, проверяют падение напряжения на резисторе R13, оно должно быть около 1.25В. Напряжение на катодах лампы VL3 не должно превышать 20В.
Убедившись в работоспособности усилителя, при помощи переменного резистора R9, устанавливают необходимое усиление канала, им же осуществляют балансировку каналов.

Читайте также:  Проверка зарядки регулятора напряжения

Усилитель собран в корпусе от компьютерного блока питания, а в качестве лицевой панели использована пластмассовая деталь от лотка подачи бумаги струйного принтера Epson. Установленный на верхней части корпуса небольшой вентилятор обеспечивает циркуляцию воздуха внутри корпуса.


Чертеж печатных плат усилителя не приводится, поскольку значительная часть соединений выполнена объемным монтажом.

В рамках статьи невозможно предусмотреть ответы на все вопросы, которые могут возникнуть у тех, кто заинтересуется данной конструкцией, поэтому с вопросами обращайтесь сюда.

Источник

Стабилизатор анодного напряжения. Схема и описание

Собирая устройства на лампах, мы регулярно сталкиваемся со значительной разницей между выходным напряжением анодного блока питания и фактическими требованиями схемы. Устранение разброса с помощью последовательно подключенного резистора имеет ряд недостатков, в том числе проседание напряжения от нагрузки.

Приведенная в данной статье схема в состоянии обеспечить требуемое напряжение с отклонением 4-5% с пониженной пульсацией. Ниже показана схема стабилизатора анодного напряжения.

Диод VD1 на входе защищает схему от переполюсовки. Стабилитроны VD2, VD3 и резистор R1 создают опорное напряжение. Соответственно, подбирая эти элементы, мы устанавливаем необходимое нам выходное напряжение.

Опорное напряжение поступает на затвор транзисторов VT1 и VT2. Использование MOSFET-транзисторов вместо биполярных транзисторов продиктовано отсутствием в них явления вторичного пробоя, который ограничивает протекание тока при высоких напряжениях. Использование двух транзисторов способствует лучшему отводу тепла от них.

Резистор R2 и конденсатор C2 предотвращают возникновение паразитных колебаний. Резисторы R3 и R4 предназначены для устранения различий в характеристиках транзисторов VT1 и VT2. Резисторы R5 и R6 и транзистор VT3 ограничивают выходной ток до заданного значения.

Если падение напряжения на R6 достаточно большое, открывается транзистор VT3, в результате чего исток транзисторов VT1 и VT2 замыкаются с их затворами. Это уменьшает выходное напряжение и сохраняет ток нагрузки. Резистор R5 защищает базу транзистора VT3 от повреждения высоким током. Конденсаторы C1 и C3 предназначены для устранения импульсных помех, которые в ламповых схемах крайне нежелательны.

Стабилизатор анодного напряжения собран на односторонней печатной плате размером 105 мм на 40мм. Печатную плату для программы Eagle можно скачать в конце стати.

stabilizator-anodnogo-napryazheniya-sxema-i-opisanie-3

Если стабилизатор предназначен для небольшой нагрузки (до 20 Вт), то можно отказаться от подключения транзистора VТ2 и резистора R4. Перед установкой резисторов R1 и R6 следует рассчитать их сопротивление из закона Ома:

stabilizator-anodnogo-napryazheniya-sxema-i-opisanie-1

  • Uвх – входное напряжение стабилизатора, (В)
  • Uz – сумма напряжений стабилитронов D1 и D2, (В)
  • Imax — максимальный выходной ток, (А)

Для правильной работы стабилитронов необходим ток, по крайней мере, в 5 мА . Возможное максимальное выходное напряжение ограничивается напряжением сток-исток транзисторов VT1 и VT2, рабочим напряжением конденсаторов C1…C3 и прочность разъемов CON1 и CON2.

Его значение определяется путем суммирования напряжений стабилитронов VD2 и VD3, и не рекомендуется поднимать более 300 вольт, поскольку это вполне достаточно для предусилителя и других маломощных схем. Стабилитроны следует устанавливать немного над платой из-за выделяемого тепла. Желательно подобрать стабилитроны с максимально большой мощностью, чтобы можно было избежать перегрева.

Читайте также:  Устройство регулировки напряжения трансформаторов сириус 2 нр

Для выходного тока, превышающего 150 мА, резисторы R3, R4 и R6 должны быть повышенной мощности. Полученные в реальности значения выходного напряжения и максимального тока могут отличаться от расчетного из-за допусков параметров отдельных элементов.

Данная схема рассчитана для питания напряжением около 260 В, с выходным напряжением около 220 В (последовательно соединенные стабилитроны на 200 В + 24 В) и максимальным выходным током около 70 мА.

Транзисторы VT1 и VT2 должны быть одинаковые. Их тип может быть любым, однако, они должны отвечать минимальным требованиям в отношении параметров: MOSFET-транзистор с каналом типа N и максимальное напряжение сток-исток не менее 500 В. Этим требованиям удовлетворяет, например, транзистор IRF820.

Скачать рисунок печатной платы (3,6 KiB, скачано: 1 295)

Источник

Анодное питание ламповых усилителей

Постановка задачи

Предпочитаю стабилизировать анодное, чем автосмещение с «нашими» электролитами. Для питания анода ламп обычно нужно стабильной подстраиваемой постоянки (особенно для лофтина) = 300-400 В, 150-220 В с токами (без фанатизма) до 20 и 350-400 мА. Про калориферы – это не здесь. Минимум деталей – не экзотических. И чтобы всё это устойчиво работало, и не спалить лампы превышением тока потребления. И, пожалуй, самое главное – чтобы по деньгам даже пенсионер мог себе это позволить (иногда).

Обуздание потребностей

Посчитайте токи своей схемы и примите коэффициент мощности блока питания не более х2, этого хватит.

Выбор деталей и схемы. Благо ГУГЛ даёт неограниченные (разумные) пределы … полёта фантазии аффтаров , не наткнитесь на Моисеев – да простят меня конфессии. Рекомендую за основу изучить.

Анодное питание ламповых усилителей

Перевод для не желающих читать = получаем приличную стабилизацию фиксированного напряжения вплоть до разумных 450-500 В, выше – пробьёт изоляцию, с неконтролируемыми максимальными токами, зависящими от трансформатора + вставки плавкой + диодов-выпрямителей + радиатора для полевика ну и диаметра жилы Вашей домашней защиты/проводки переменки 220 В.

Почесав покидаемый седыми волосами затылок, принято решение (да простит меня автор):

  1. отказаться от идеи ступенчатого изменения выходного напряжения подстановкой стабилитронов в катод (3) SE;
  2. ввести возможность некоторой подстройки выхода по напряжению;
  3. ввести ограничение/защиту(плавно подстраиваемое) по току = см. «Постановка задачи».

Состав девайса

  1. трансформатор;
  2. защиту от превышения (КЗ) и броска тока по переменке (типа варистор R1 и вставка плавкая FU1);
  3. выпрямитель(желательно на быстрых диодах) ;
  4. сглаживающий С1 (порядка 4 мкФ на 1 Ватт мощности, иначе большая емкость в момент включения «коротит» + диодного моста на корпус со всеми вытекающими…);
  5. ключ VT1 на мощном полевике (с защитой 12 В затвор-исток);
  6. контролёр/усилитель(управляющий мосфетом) ошибки DA1 – выходного напряжения;
  7. плавно подстраиваемый ограничитель тока на VT2, R3,4;
  8. делитель напряжений ОС R5-6-7.

Вот что получилось, пока без расчетных номиналов:

Анодное питание ламповых усилителей

Даташит на SE для расчетов:

Анодное питание ламповых усилителей

«Внутренности» SE для понимания:

Анодное питание ламповых усилителей

Это значит (на схеме уже нанёс):

  1. для нормальной работы SE серии 012-040 напряжение анод-катод (VCGO) должно быть 50 В, для остальных 070-140 = 150 В;
  2. при этом потребляемый ток (Ic) ровно 20 мА, это всё для расчета R2;
  3. ток делителя ОС R5,6,7 около 2 мА из соображений «калорифера»;
  4. напряжение «ограничения тока» = срабатывания VT2 около 0,7 В = это для расчета R3;
  5. «нормальное-рабочее» падение напряжения (разница входного и выходного для полевика) должно быть более 8 В, его превышение, помноженное на ток девайса, и есть нагрев полевика.

Арифметика (начальная школа)

ПРИМЕР 1:

Выход нужен = 144 В не более 20 мА, вход 155 В (такой трансформатор). У меня есть SE103N.

R2 = (вход 155 В – рабочее SE 150 В)/ток SE 0,02 А = 250 Ом, мощность на нём = 5х0,02 = 0,1.

R5+R6+R7 = выход 144 В/ток делителя 0,002 = 72 кОм.

R7 + 1/2R6 = рабочее SE 103 В/ток делителя 0,002 = 51,5 кОм, примем % регулировки около 10, значит 72х10% = 7,2 кОм.

R7= 51,5 – 7,2 = 44,3 кОм = 43 кОм.

R6 около 10-12 кОм.

R5 остается 72-43-12 = 17 кОм = 18 кОм, мощность на всех R5, R6, R7 = 144х0,002 = 0,288 Вт.

R3 = порог VT2 0,7 В/ограничение 0,02 А = 35 Ом(необходимо учесть номинал R4), это значит при таком сопротивлении (движок R4 влево = Uke = максимум) девайс будет ограничивать ток до 20 мА, движок вправо – меньше «сопротивление/напряжение» = нужен больший ток для ограничения = увеличение тока ограничения.

ПРИМЕР 2:

Выход нужен 215 В не более 350 мА, вход 250 В, есть SE 130. Просто цифры, для простоты и исключения ошибки распечатываю голую схему + подписываю ДАНО и нажимаю кнопки на логарифмической линейке.

R2 = (250-150)/0,02 = 5000, мощность = (250-150)х0,02 = 2 Вт .

R5, R6, R7 = 215/0,002 = 107500

R7 + 1/2R6 = 130/0,002 = 65000

R6 = 65000×10% = 6500

R5 = 107500 – 65000 – 6500 = 36000

Мощность R5, R6, R7 = 215×0,002 = 0,43 Вт

R3 = 0,7/0,35 = 2 Ом

ВАЖНО! Замеряйте падение напряжения на ключе-полевике и перемножьте его на нужный Вам ток = не забудьте про небольшой радиатор. Дальнейшее объяснение считаю «разжёвывание пальцев» как сказал мой наставник.

Проверено, работает! Возможны опечатки, спасибо за корректировку. Всем удачи.

Источник