Меню

Схема испытания изоляции повышенным напряжением промышленной частоты



Испытание изоляции обмоток повышенным напряжением

1. Испытание повышенным напряжением промышленной частоты.

Испытание электрической прочности изоляции обмоток относительно корпуса и между обмотками производят синусоидальным переменным напряжением частотой 50 Гц по схеме рис. 1.

Схема испытания изоляции обмоток машин повышенным напряжением переменного тока
Рис. 1. Схема испытания изоляции обмоток машин повышенным напряжением переменного тока.
F — шаровой разрядник.

Испытательный трансформатор Т2 выбирают с запасом по напряжению и мощности.
Питание испытательного трансформатора регулируемым напряжением производят через индукционный регулятор или регулируемый трансформатор от линейного напряжения сети трехфазного тока. Питание фазным напряжением недопустимо. Для испытательных трансформаторов с пределом испытательного напряжения не выше 3000 В допускается питание от линейного напряжения сети трехфазного тока через реостат, включенный потенциометрически.
При питании крупных машин мощностью выше 2000 кВ-А и номинальным напряжением 6000 В и выше для контроля амплитуды испытательного напряжения рекомендуется включать параллельно объекту испытания шаровой разрядник, устанавливаемый на напряжение, превышающее амплитуду данного испытательного напряжения не больше чем на 10 %.
Значения испытательного напряжения промышленной частоты для испытания изоляции обмоток относительно корпуса и между обмотками по ГОСТ 183-74 и ПУЭ приведены в табл. 1 (Uр — рабочее напряжение).
Как правило, при испытании следует руководствоваться рекомендациями ПУЭ-76.
Продолжительность приложения испытательного напряжения 1 мин.
Проведение испытаний изоляции обмоток высоким напряжением следует начинать с организации рабочего места в соответствии с требованиями правил техники безопасности. Данным испытаниям должка предшествовать проверка сопротивления изоляции согласно инструкций. Если при испытаниях применяется шаровой разрядник, то подключение испытуемого объекта к испытательной установке производится после проверки и настройки шарового разрядника. Напряжение пробоя разрядника не должно превышать более чем на 10 % заданного значения испытательного напряжения. В табл. 2 приведены значения пробивных напряжений для различных диаметров шарового разрядника.

Значения испытательного напряжения промышленной частоты для испытания изоляции обмоток машин на объекте

Пробивные напряжения шаровых разрядников
Таблица 2

Верхний предел измерения

Нижний предел измерения

Искровой промежуток, мм

Пробивное напряжение (действующее значение), кВ

Искровой промежуток, мм

Пробивное напряжение (действующее значение), кВ

Продолжение табл. 2

Верхний предел измерения

Нижний предел измерения

Искровой промежуток, мм

Пробивное напряжение (действующее значение), кВ

Искровой промежуток, мм

Пробивное напряжение (действующее значение), кВ

Согласно ПУЭ испытание обмоток статора синхронных генераторов рекомендуется производить до ввода ротора в статор. В процессе испытания производят наблюдение за состоянием лобовых частей машин. Повышать испытательное напряжение нужно плавно, начиная с 25—30 % испытательного. Ступени измерения напряжения не должны превышать 5 % испытательного, а время подъема напряжения от 0,5 UH до Uи не должно быть меньше 10 с. По истечении времени испытания повышенное напряжение плавно снижают, и при значении, равном 0,3 Uи, установка может быть выключена. По истечении времени испытания повышенным напряжением (1 мин) обмотки статора синхронных генераторов напряжением 10 кВ и выше испытательное напряжение снижается до номинального значения и выдерживается в течение 5 мин для наблюдения за коронированием лобовых частей обмотки статора. В период испытания с безопасного расстояния ведут наблюдение за испытуемой изоляцией. По окончании испытания всех обмоток производят измерение сопротивления изоляции мегаомметром.
Результаты испытания изоляции обмоток считаются удовлетворительными, если во время испытания не происходит пробоя изоляции или перекрытия ее скользящим разрядом. Явление коронирования на поверхности во внимание не принимается. Пробой изоляции характеризуется резким и устойчивым спаданием испытательного напряжения; перекрытие скользящими разрядами сопровождается неустойчивым понижением испытательного напряжения. При пробое и обнаружении серьезных дефектов следует устранить дефекты, после чего испытание повторяется до получения удовлетворительных результатов.

2. Испытание изоляции обмоток выпрямленным напряжением.

Испытание выпрямленным напряжением изоляции обмоток машин переменного тока с номинальным напряжением 6 кВ и выше, мощностью 1000 кВт и больше производится при наличии соответствующих рекомендаций завода-изготовителя. Испытание выпрямленным напряжением производится до испытания переменным напряжением.
Значения испытательного выпрямленного напряжения для машин 1-й группы принимаются 2,5 t/H, а для машин 2-й группы — согласно табл. ГОСТ 183-74 допускает дополнительное испытание выпрямленным напряжением, равным 1,28 действующего значения переменного напряжения, указанного в табл. 1. Одновременно производится измерение тока утечки. В качестве выпрямителя может быть использовано устройство, имеющее одно- или двухполупериодную схему выпрямления.
Выпрямленное напряжение подводится к каждой фазе обмотки относительно корпуса при двух других, заземленных по схеме рис. 1. При наличии параллельных ветвей фаз обмотки каждую ветвь испытывают отдельно.
Подъем испытательного напряжения следует производить не менее чем пятью ступенями, причем начальная ступень не должна превышать 0,5Iн. На каждой ступени напряжение следует выдерживать в течение 1 мин. Ток утечки следует измерять каждые 15 и 60 с. Время снятия напряжения не нормируется. Если испытания проводились во время монтажа до ввода ротора в статор, то после окончания монтажа машины проводят повторное испытание, при этом выпрямленное напряжение равно 1,5 Iн.
Провода испытательного аппарата прокладывают на расстоянии не менее чем 0,5 м от корпуса машины и других заземленных частей.
Схема испытания изоляции обмоток выпрямленным напряжением
Рис. 1. Схема испытания изоляции обмоток выпрямленным напряжением.
Если в процессе испытания при неизменном испытательном напряжении на какой-то ступени ток утечки продолжает нарастать, то испытание прекращают и принимают меры по устранению причин нарастания. Абсолютные значения тока утечки при различных ступенях испытательного напряжения не должны превышать допустимых значений, приведенных в табл.
Таблица 3
Значения испытательных напряжений

Читайте также:  Сечение провода допустимая величина потери напряжения

Испытательное напряжение, время

Электрические машины (кроме турбогенераторов и гидрогенераторов)

Электрические машины, у которых при напряжении 1,3Uа ток холостого хода превышает номинальный

Источник

Испытание изоляции повышенным напряжением

Испытание изоляции повышенным напряжениемЭлектрическая прочность изоляции определяется ее способностью длительно выдерживать рабочее напряжение. Уменьшение электрической прочности вызывается в большинстве случаев увлажнением и местными дефектами изоляции. Обычно такими дефектами являются газовые (воздушные) включения в твердом или жидком диэлектрике.

За счет того, что электрическая прочность газа во включении ниже, чем у основной изоляции, создаются условия для возникновения пробоя или перекрытия изоляции в месте дефекта — частичного разряда. В свою очередь, частичные разряды вызывают дальнейшее разрушение изоляции. Частичным разрядом называют как скользящий (поверхностный) разряд, так и пробой отдельных зон или элементов изоляции.

Для определения запаса электрической прочности изоляции производится испытание ее повышенным напряжением. Испытательное напряжение, значительно превышающее рабочее, прикладывается в течение времени, достаточного для развития разряда в местном дефекте вплоть до пробоя. Таким образом, приложение повышенного напряжения позволяет не только выявить дефекты, но и гарантировать необходимый уровень электрической прочности изоляции в период ее эксплуатации.

Испытанию изоляции повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами, описанными ранее. Изоляция может быть подвергнута испытанию повышенным напряжением только при положительных результатах предшествующих проверок.

Изоляция считается выдержавшей испытание повышенным напряжением в том случае, если не было пробоев, частичных разрядов, выделений газа или дыма, резкого снижения напряжения и возрастания тока через изоляцию, местного нагрева изоляции.

В зависимости от вида оборудования и характера испытания изоляция может быть испытана приложением повышенного напряжения переменного тока или выпрямленного напряжения. В тех случаях, когда испытание изоляции производится как переменным, так и выпрямленным напряжением, испытание выпрямленным напряжением должно предшествовать испытанию переменным напряжением.

Испытание изоляции повышенным напряжением переменного тока

Испытание изоляции повышенным напряжением Испытание повышенным напряжением переменного тока промышленной частоты производится посредством повышающего трансформатора с регулировочным устройством на стороне низшего напряжения. Схема установки должна содержать также выключатель питания с видимым разрывом и максимальную токовую защиту для отключения питания трансформатора при пробое или перекрытии изоляции объекта, например рубильник и предохранитель или автоматический выключатель со снятой крышкой. Уставка срабатывания защиты должна превышать ток, потребляемый из сети при максимальном значении испытательного напряжения на объекте, не более чем в два раза.

Читайте также:  Источники напряжения звуковой частоты

В качестве испытательного напряжения используется обычно напряжение промышленной частоты. Время приложения испытательного напряжения принято равным 1 мин для главной изоляции и 5 мин для межвитковой. Такая продолжительность приложения испытательного напряжения не сказывается на состоянии изоляции, не имеющей дефектов, и достаточна для осмотра находящейся под напряжением изоляции.

Скорость повышения напряжения до одной трети испытательного значения может быть произвольной, в дальнейшем испытательное напряжение следует повышать плавно, со скоростью, допускающей визуальный отсчет на измерительных приборах. При испытании изоляции электрических машин время повышения напряжения от половинного до полного значения должно быть не менее 10 с.

После установленной продолжительности испытания напряжение плавно снижается до значения, не превышающего одной трети испытательного, и отключается. Резкое снятие напряжения допускается в тех случаях, когда это необходимо для безопасности людей или сохранности оборудования. Под продолжительностью испытания подразумевается время приложения полного испытательного напряжения.

Для предотвращения недопустимых перенапряжений при испытаниях (из-за высших гармоник в кривой испытательного напряжения) испытательная установка должна быть по возможности включена на линейное напряжение сети. Форму кривой напряжения можно контролировать электронным осциллографом.

Испытание изоляции повышенным напряжением Испытательное напряжение, за исключением ответственных испытаний (генераторов, крупных двигателей и т. д.), измеряют на стороне низкого напряжения. При испытании объектов с большой емкостью напряжение на высокой стороне испытательного трансформатора может несколько превышать расчетное по коэффициенту трансформации за счет емкостного тока.

При ответственных испытаниях испытательное напряжение измеряют на высокой стороне испытательного трансформатора с помощью трансформаторов напряжения или электростатических киловольтметров.

В тех случаях, когда одного трансформатора напряжения для измерения испытательного напряжения недостаточно, допускается последовательное соединение двух однотипных трансформаторов напряжения. Применяют также дополнительные сопротивления к вольтметрам.

Для защиты ответственных объектов от случайного опасного повышения напряжения параллельно испытываемому объекту должны быть включены через сопротивление (2 — 5 Ом на каждый вольт испытательного напряжения) шаровые разрядники с пробивным напряжением, равным 110 % испытательного.

Схема испытания изоляции электрооборудования повышенным напряжением переменного тока приведена на рис. 1.

Схема испытания изоляции повышенным напряжением переменного тока

Рис. 1. Схема испытания изоляции повышенным напряжением переменного тока.

Перед подачей напряжения на испытываемый объект полностью собранную схему опробуют вхолостую и проверяют напряжение пробоя шаровых разрядников.

В качестве испытательных трансформаторов, кроме специальных, можно использовать силовые трансформаторы и трансформаторы напряжения.

Силовые трансформаторы при таком использовании допускают нагрузку по току до 250 % номинальной при трехкратном (пофазном) испытании с двухминутным перерывом между приложениями напряжения. Для трансформаторов напряжения типа НОМ допустимо повышение напряжения на первичной обмотке до 150 — 170 % номинального. При отсутствии испытательного трансформатора достаточной мощности возможно параллельное включение однотипных трансформаторов.

Широко применяются измерительные трансформаторы напряжения типа НОМ. Их максимальная мощность, указываемая в паспортных данных и обусловленная обеспечением соответствующего класса точности, сравнительно невелика. Однако по условиям нагрева они допускают кратковременную перегрузку от 3- до 5-кратной по отношению к значению тока, вычисленному по максимальной паспортной мощности. Кроме того, эти трансформаторы могут быть перевозбуждены по напряжению на 30—50 %, можно включить два трансформатора последовательно.

Схемы последовательного включения испытательных трансформаторов

Рис. 2. Схемы последовательного включения испытательных трансформаторов: ТL1 и TL2 — испытательные трансформаторы; TL3 — изолирующий трансформатор.

Включение двух трансформаторов по схеме рис. 2а применимо в случае, когда оба электрода объекта могут быть изолированы от земли. Испытательное напряжение равно сумме напряжений обоих трансформаторов; номинальные значения этих напряжений могут быть различными. При каскадном соединении трансформаторов (рис. 2а, б) один из них TL2 находится под высоким потенциалом и корпус его должен быть изолирован от земли.

Возбуждение этого трансформатора может производиться с помощью специальной обмотки первого трансформатора TL1 каскада (рис. 2б) или непосредственно от его вторичной обмотки, если максимальное значение напряжения на ней не превысит допустимого для первичной обмотки трансформатора TL2. Если надежно изолировать трансформатор TL2 не представляется возможным, используют вспомогательный изолирующий трансформатор TL3 (рис. 2в).

Читайте также:  Переключение напряжения без бланков

Силовые трансформаторы применяются с получением фазного или линейного напряжения. В первом случае нейтраль обмотки ВН заземляется, а первичное напряжение подается на нуль и соответствующий фазный вывод обмотки НН.

Мощность трансформатора принимается при этом равной 1/3 номинальной. Линейное напряжение используется при условии, что изоляция нейтрали рассчитана на полное фазное напряжение. В этом случае один или два соединенных между собой вывода ВН заземляются. мощность трансформатора принимается равной 2/3 номинальной. Силовые трансформаторы допускают кратковременную перегрузку по току в 2,5—3 раза.

Регулировочное устройство должно обеспечивать изменение напряжения трансформатора от 25—30 % до полного значения испытательного напряжения. Регулирование должно быть практически плавным, со ступенями, не превышающими 1—1,5 % от испытательного напряжения. Разрывы цепи при регулировании недопустимы.

Напряжение должно быть близко к синусоидальному с содержанием высших гармонических не более 5 %. При использовании регуляторов с малым внутренним сопротивлением, например автотрансформаторов, это требование практически выполняется. Применение дросселей или реостатов для этой цели не рекомендуется.

Испытание изоляции выпрямленным напряжением

Применение выпрямленного испытательного напряжения позволяет значительно уменьшить мощность испытательной установки, делает возможным испытание объектов с большой емкостью (кабелей конденсаторов и др.), позволяет контролировать состояние изоляции по измеряемым токам утечки.

При испытании изоляции выпрямленным напряжением, как правило, применяются схемы однополупериодного выпрямления. На рис. 3 приведена принципиальная схема испытания изоляции выпрямленным напряжением.

Схема испытания изоляции выпрямленным напряжением

Рис. 3. Схема испытания изоляции выпрямленным напряжением

Методика испытания изоляции выпрямленным напряжением аналогична методике при испытаниях переменным напряжением. Дополнительно ведется контроль за током утечки.

Время приложения выпрямленного напряжения более продолжительно, чем при испытании переменным напряжением, и в зависимости от испытываемого оборудования установлено нормами в пределах 10 — 15 мин.

Измерение испытательного напряжения, как правило, осуществляется с помощью вольтметра, включенного на стороне низкого напряжения испытательного трансформатора (с пересчетом по коэффициенту трансформации).

Испытание изоляции повышенным напряжением Поскольку выпрямленное напряжение определяется амплитудным значением, показания вольтметра (измеряющего эффективные значения напряжения) необходимо умножить на внутреннее сопротивление , выпрямительной лампы, небольшое при нормальном накале катода резко возрастает при недостаточном токе накала. При этом падение напряжения в выпрямительной лампе увеличивается, а на испытываемом объекте уменьшается. Поэтому при испытаниях необходимо следить за напряжением питания испытательной установки. Целесообразно также применение вольтметра с большим добавочным сопротивлением для измерения напряжений на высокой стороне.

Как и при испытаниях переменным напряжением, в целях защиты ответственных объектов от случайного чрезмерного повышения напряжения рекомендуется параллельно испытываемому объекту включить через сопротивление (2 — 5 Ом на каждый вольт испытательного напряжения) разрядник с пробивным напряжением, равным 110 — 120 % испытательного.

Ток, проходящий через изоляцию при испытаниях выпрямленным напряжением, в большинстве случаев не превышает 5 — 10 мА, что обусловливает небольшую мощность испытательного трансформатора.

При испытаниях объектов с большой емкостью (силовые кабели, конденсаторы, обмотки крупных электрических машин) заряженная до испытательного напряжения емкость объекта имеет большой запас энергии, мгновенный разряд которой может привести к разрушению аппаратуры испытательной установки. Поэтому разряжать испытываемый объект следует так, чтобы разрядный ток не проходил через измерительный прибор.

Для снятия заряда с испытываемых объектов используются заземляющие штанги, в электрическую цепь которых включается сопротивление 5 — 50 кОм. В качестве разрядных сопротивлений для объектов, обладающих большой емкостью, применяют наполненные водой резиновые трубки.

Заряд емкости даже после кратковременного наложения заземления может сохраняться длительно и представлять опасность для жизни персонала. Поэтому после того как испытываемый объект разряжен с помощью разрядного устройства, он должен быть наглухо заземлен.

Источник