Символический (комплексный) метод расчета цепей переменного тока
Одним из способов расчета цепей переменного тока является комплексный, или еще как говорят, символический метод расчета. Этот метод применяется при анализе схем с гармоническими ЭДС, напряжениями и токами. В результате решения получают комплексное значение токов и напряжений, используя для решения любые методы (эквивалентных преобразований, контурных токов, узловых потенциалов и т.п.). Но для начала необходимо иметь понятие, в каких именно формах может представляться синусоидальная величина. 1. Одна из форм представления – это вращающийся вектор (см. рис.1):
Рис.1. Вращающийся вектор
С помощью рисунка ясно видно, как с течением времени меняется значение синусоидальной величины. В нашем случае – это величина а на графике, которая может быть, например, входным напряжением. Величина имеет некоторое начальное значение при t = 0 при начальной фазе φ
имеет положительное максимальное значение при угле ωt3, когда при времени t3 сумма ωt3 + φ = 90° и соответственно,
имеет отрицательное максимальное значение при угле ωt7, когда при времени t7 сумма углов ωt7 + φ = 270° и, соответственно,
и имеет два нулевых значения при ωtn + φ = 0, когда ωtn = —φ (на рис.1 эта область не показана и находится слева от начала координат)
и имеет нулевое значение при угле ωt11, когда при времени t11 сумма ωt11 + φ = 360° и соответственно,
Именно по такому закону и меняется привычное нам переменное напряжение 220 В, изменяясь по синусоидальному закону от значения 0 В до максимальных 311 В и обратно.
2. Другая форма представления – это комплексное число. Чтобы представить ранее рассмотренную форму представления синусоидальной величины, которая имеет некоторую начальную фазу φ, создают комплексную плоскость в виде графика зависимости двух величин (рис.2)
Рис.2. Комплексное число на комплексной плоскости
Длина вектора Am на такой комплексной плоскости равна амплитуде (максимальному значению) рассматриваемой величины. С учетом начальной фазы φ такое число записывают как .
На практике при использовании для расчетов символического (комплексного) метода расчета используют для некоторых удобств не амплитудное значение величины, а так называемое действующее значение. Его величина в корень из двух раз меньше амплитудного и обозначается без индекса m, т.е. равна
На рисунке выше этот вектор также показан.
Например, при том же нашем напряжении в сети, максимальное значение синусоидально изменяющегося напряжения равно 311 В, а действующее значение, к значению которого мы привыкли
При работе с комплексными числами и расчетов применяют различные формы записи комплексного числа. Например, при сложении комплексных чисел удобнее использовать алгебраическую форму записи таких чисел, а при умножении или делении – показательную форму записи. В некоторых случаях пишут тригонометрическую форму.
Итак, три формы записи комплексного числа:
1) показательная форма в виде
2) тригонометрическая форма в виде
3) алгебраическая форма
где ReA — это действительная составляющая комплексного числа, ImA — мнимая составляющая.
Например, имеем комплексное число в показательной форме вида
в тригонометрической форме записи это запишется как
при подсчете получим число, плавно переходящее в алгебраическую форму с учетом того, что
В итоге получим
При переходе от алгебраической формы к показательной комплексное число вида
переходит к показательному виду по следующим преобразованиям
Таким образом, и получим
Перейдем к рассмотрению несложных примеров использования символического, или по-другому, комплексного метода расчета электрических цепей. Составим небольшой алгоритм комплексного метода:
-
-
- Составить комплексную схему, заменяя мгновенные значения ЭДС, напряжений и токов их комплексным видом
- В полученной схеме произвольно выбирают направления токов в ветвях и обозначают их на схеме.
- При необходимости составляют комплексные уравнения по выбранному методу решения.
- Решают уравнения относительно комплексного значения искомой величины.
- Если требуется, записывают мгновенные значения найденных комплексных величин.
-
Пример 1. В схеме рис.3 закон изменения ЭДС e = 141sin*ωt. Сопротивления R1 = 3 Ом, R2 = 2 Ом, L = 38,22 мГн, С = 1061,6 мкФ. Частота f = 50 Гц. Решить символическим методом. Найти ток и напряжения на элементах. Проверить 2-ой закон Кирхгофа для цепи.
Рис.3. Схема с последовательным соединением элементов
Составляем комплексную схему, обозначив комплексные токи и напряжения (рис.4):
Рис.4. Схема с комплексными обозначениями
По закону Ома ток в цепи равен
где U — комплексное входное напряжение, Z — полное сопротивление всей цепи. Комплекс входного напряжения находим как
Пояснение: здесь начальная фаза φ = 0°, так как общее выражение для мгновенного значения напряжение вида при φ = 0° равно
Соответственно, комплекс входного напряжения в показательной форме запишется как
Полное комплексное сопротивление цепи в общем виде
Находим комплексное сопротивление индуктивности
Находим комплексное сопротивление емкости
Соответственно, общее комплексное сопротивление цепи
Комплексные напряжения на элементах
Проверяем второй закон Кирхгофа для замкнутого контура, т.е. должно выполняться равенство
С небольшим расхождением из-за округлений промежуточных вычислений всё верно.
Пример 2. В электрической цепи (рис.5) однофазного синусоидального тока, схема и параметры элементов которой заданы для каждого варианта в таблице, определить:
1) полное сопротивление электрической цепи и его характер;
2) действующие значения токов в ветвях;
3) показания вольтметра и ваттметра;
- Исходные данные: Е = 220 В, f = 50 Гц, L1 = 38,2 мГн, R2 = 6 Ом, С2 = 318 мкФ, L2 = 47,7 мГн, R3 = 10 Ом, С3 = 300 мкФ.
Рис.5.Цепь однофвзного синусоидального тока
Решение:
1. Находим комплексные сопротивления ветвей и всей цепи:
Учитываем, что
Комплексное сопротивление первой ветви:
Комплексное сопротивление второй ветви:
Комплексное сопротивление третьей ветви:
Общее сопротивление цепи
— нагрузка носит активно-индуктивный характер
2. Находим действующие значения токов в ветвях:
Рис.6. Схема с обозначенными комплексными токами
Действующие значения, соответственно,
3. Определим показания приборов:
Вольтметр подключен по схеме параллельно источнику питания. Соответственно его показание равно:
U=220 В
Ваттметр включен токовой обмоткой в разрыв третьей ветви, а обмоткой напряжения также к выводам третьей ветви, измеряя, таким образом, активную мощность третьей ветви. Эта мощность равна мощности на сопротивлении R3. Его показания:
Источник
3.2 Символический метод расчета цепей синусоидального тока
3.2 Символический метод расчета цепей синусоидального тока
При расчете линейных цепей символическим методом токи, напряжения, ЭДС и сопротивления входят в уравнения электрического состояния в виде комплексов. Основными законами, применяемыми для расчета электрических цепей, являются законы Ома и Кирхгофа
Решение задач символическим методом
Задача 3.2.1 Для схемы рис. 3.2.1 определить токи во всех ветвях и напряжения на всех участках, составить баланс активных и реактивных мощностей, построить векторную диаграмму цепи на комплексной плоскости, записать мгновенные значения токов, если u = Umsin(ωt + ψU), Um =600 В, ψU = –90°, R1 = 10 Ом, Х2 = R3 = Х3 = 20 Ом, Х4 = 50 Ом.
Задачу решить символическим методом.
Примечание. Решение этой задачи методом векторных диаграмм приведено в 3.1 Расчет цепей синусоидального тока методом векторных диаграмм
Рис. 3.2.1 Схема электрической цепи
Задачу решаем символическим методом в комплексных амплитудах.
Мгновенное значение напряжения
u = U m sin ( ω t + ψ U ) = 600 sin ( ω t − 90 ° ) , В ,
тогда комплексная амплитуда напряжения
U ? m = U m ⋅ e j ψ U = 600 ⋅ e − j 90 ° , В .
Комплексные сопротивления ветвей
Z _ 1 = R 1 − j X 4 = 10 − j 50 О м ; Z _ 2 = j X 2 = j 20 = 20 ⋅ e j 90 ° О м ; Z _ 3 = R 3 − j X 3 = 20 − j 20 = 20 2 ⋅ e − j 45 ° О м .
Эквивалентная электрическая схема представлена на рис. 3.2.2.
Рис. 3.2.2 Эквивалентная электрическая схема
Для схемы со смешанным соединением комплексное общее сопротивление
Z _ = Z _ 1 + Z _ 2 ⋅ Z _ 3 Z _ 2 + Z _ 3 = ( 10 − j 50 ) + 20 e j 90 ° ⋅ 20 2 e − j 45 ° j 20 + ( 20 − j 20 ) = = ( 10 − j 50 ) + 20 2 e j 45 ° = ( 10 − j 50 ) + ( 20 + j 20 ) = = 30 − j 30 = 30 2 e − j 45 ° О м .
Комплексная амплитуда общего тока по закону Ома
I ? 1 m = U ? m Z _ = 600 ⋅ e − j 90 ° 30 2 e − j 45 ° = 10 2 e − j 45 ° = 10 − j 10 А .
Комплексные амплитуды токов ветвей по формуле делителя токов
I ˙ 2 m = I ˙ 1 m ⋅ Z _ 3 Z _ 2 + Z _ 3 = 10 2 e − j 45 ° ⋅ 20 2 e − j 45 ° j 20 + ( 20 − j 20 ) = 20 e − j 90 ° = − j 20 А ; I ˙ 3 m = I ˙ 1 m ⋅ Z _ 2 Z _ 2 + Z _ 3 = 10 2 e − j 45 ° ⋅ 20 e j 90 ° j 20 + ( 20 − j 20 ) = 10 2 e j 45 ° = 10 + j 10 А .
Проверка по первому закону Кирхгофа
I ? 1 m = I ? 2 m + I ? 3 m = ( − j 20 ) + ( 10 + j 10 ) = 10 − j 10 = 10 2 e − j 45 ° А .
Действующие значения токов в ветвях
I 1 = I 1 m 2 = 10 2 2 = 10 А ; I 2 = I 2 m 2 = 20 2 = 10 2 А ; I 3 = I 3 m 2 = 10 2 2 = 10 А .
По формуле перехода от комплексных амплитуд к мгновенным значениям
i ( t ) = Im [ I ? m e j ω t ] = Im [ I m e j ψ I e j ω t ] = Im [ I m e j ( ω t + ψ I ) ] = I m sin ( ω t + ψ I )
мгновенные значения токов
i 1 ( t ) = I 1 m sin ( ω t + ψ I 1 ) = 10 2 sin ( ω t − 45 ° ) А ; i 2 ( t ) = I 2 m sin ( ω t + ψ I 2 ) = 20 sin ( ω t − 90 ° ) А ; i 3 ( t ) = I 3 m sin ( ω t + ψ I 3 ) = 10 2 sin ( ω t + 45 ° ) А .
Комплексная полная мощность источника
S ˜ и с т = P и с т + j Q и с т = U ? ⋅ I * 1 = 600 e − j 90 ° ⋅ 10 2 e + j 45 ° = = 6000 2 e − j 45 ° = 3000 − j 3000 В ⋅ А ,
откуда активная мощность источника
P и с т = Re [ S ˜ и с т ] = 3000 В т ,
реактивная мощность источника
Q и с т = Im [ S ˜ и с т ] = − 3000 в а р .
Активная мощность потребителей
P п о т р = I 1 2 R 1 + I 3 2 R 3 = 10 2 ⋅ 10 + 10 2 ⋅ 20 = 3000 В т .
Реактивная мощность потребителей
Q п о т р = I 1 2 ( − X 4 ) + I 2 2 X 2 + I 3 2 ( − X 3 ) = = 10 2 ⋅ ( − 50 ) + ( 10 2 ) 2 ⋅ 20 + 10 2 ⋅ ( − 20 ) = − 3000 в а р .
Для построения топографической диаграммы на комплексной плоскости необходимо рассчитать комплексные действующие значения потенциалов точек схемы
φ ? e = 0 ; φ ? d = φ ? e + I ? 1 ⋅ ( − j X 4 ) = 0 + 10 e − j 45 ° ⋅ 50 e − j 90 ° = 500 e − j 135 ° = − 250 2 − j 250 2 В ; φ ? b = φ ? d + I ? 2 ⋅ j X 2 = ( − 250 2 − j 250 2 ) + 20 2 e − j 90 ° ⋅ 20 e j 90 ° = − 50 2 − j 250 2 В ; φ ? c = φ ? d + I ? 3 ⋅ ( − j X 3 ) = ( − 250 2 − j 250 2 ) + 10 e j 45 ° ⋅ 20 e − j 90 ° = = ( − 250 2 − j 250 2 ) + ( 100 2 − j 100 2 ) = − 150 2 − j 350 2 В ; φ ? a = φ ? b + I ? 1 ⋅ R 1 = ( − 50 2 − j 250 2 ) + ( 5 2 − j 5 2 ) ⋅ 10 = − j 300 2 = U ? .
При построении векторной диаграммы на комплексной плоскости учитываем направления векторов напряжения на пассивных элементах. Например, вектор напряжения U ? R 1 = I ? 1 R 1 = φ ? a − φ ? b на комплексной плоскости направлен от точки b к точке a, а вектор напряжения U ? L 2 = I ? 2 j X 2 = φ ? b − φ ? d на комплексной плоскости направлен от точки d к точке b.
Топографическая диаграмма на комплексной плоскости приведена на рис. 3.2.3.
Рис. 3.2.3 Топографическая диаграмма на комплексной плоскости
Источник
Основы символического метода расчета. Методы контурных токов и узловых потенциалов.
Закон Ома для участка цепи с источником ЭДС
Возьмем два участка цепи a — b и c — d (см. рис. 1) и составим для них уравнения в комплексной форме с учетом указанных на рис. 1 положительных направлений напряжений и токов.
Объединяя оба случая, получим
или для постоянного тока
Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с источником ЭДС , согласно которому ток на участке цепи с источником ЭДС равен алгебраической сумме напряжения на зажимах участка цепи и ЭДС, деленной на сопротивление участка. В случае переменного тока все указанные величины суть комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление совпадает с выбранным направлением тока, и со знаком “-”, если их направление противоположно направлению тока.
Основы символического метода расчета цепей
синусоидального тока
Расчет цепей переменного синусоидального тока может производиться не только путем построения векторных диаграмм, но и аналитически – путем операций с комплексами, символически изображающими синусоидальные ЭДС, напряжения и токи. Достоинством векторных диаграмм является их наглядность, недостатком – малая точность графических построений. Применение символического метода позволяет производить расчеты цепей с большой степенью точности.
Символический метод расчета цепей синусоидального тока основан на законах Кирхгофа и законе Ома в комплексной форме.
Уравнения, выражающие законы Кирхгофа в комплексной форме, имеют совершенно такой же вид, как и соответствующие уравнения для цепей постоянного тока. Только токи, ЭДС, напряжения и сопротивления входят в уравнение в виде комплексных величин.
1. Первый закон Кирхгофа в комплексной форме:
2. Второй закон Кирхгофа в комплексной форме:
или применительно к схемам замещения с источниками ЭДС
3. Соответственно матричная запись законов Кирхгофа в комплексной форме имеет вид:
§ первый закон Кирхгофа:
§ второй закон Кирхгофа
Определить: | 1) полное комплексное сопротивление цепи ; | |||
2) токи | ||||
Рис. 2 |
4. Принимая начальную фазу напряжения за нуль, запишем:
5. Поскольку ток распределяется обратно пропорционально сопротивлению ветвей (это вытекает из закона Ома), то
7. Аналогичный результат можно получить, составив для данной схемы уравнения по законам Кирхгофа в комплексной форме
или после подстановки численных значений параметров схемы
Специальные методы расчета
Режим работы любой цепи полностью характеризуется уравнениями, составленными на основании законов Кирхгофа. При этом необходимо составить и решить систему с n неизвестными, что может оказаться весьма трудоемкой задачей при большом числе n ветвей схемы. Однако, число уравнений, подлежащих решению, может быть сокращено, если воспользоваться специальными методами расчета , к которым относятся методы контурных токов и узловых потенциалов.
Метод контурных токов
Идея метода контурных токов: уравнения составляются только по второму закону Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по замкнутым контурам, т.е. в случае выбора главных контуров равных токам ветвей связи. Число уравнений равно числу независимых контуров, т.е. числу ветвей связи графа . Первый закон Кирхгофа выполняется автоматически. Контуры можно выбирать произвольно, лишь бы их число было равно и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие. Такие контуры называются независимыми . Их выбор облегчает использование топологических понятий дерева и ветвей связи.
Направления истинных и контурных токов выбираются произвольно. Выбор положительных направлений перед началом расчета может не определять действительные направления токов в цепи. Если в результате расчета какой-либо из токов, как и при использовании уравнений по законам Кирхгофа, получится со знаком “-”, это означает, что его истинное направление противоположно.
Пусть имеем схему по рис. 3.
Выразим токи ветвей через контурные токи:
Обойдя контур aeda, по второму закону Кирхгофа имеем
Таким образом, получили уравнение для первого контура относительно контурных токов. Аналогично можно составить уравнения для второго, третьего и четвертого контуров:
совместно с первым решить их относительно контурных токов и затем по уравнениям, связывающим контурные токи и токи ветвей, найти последние.
Однако данная система уравнений может быть составлена формальным путем:
При составлении уравнений необходимо помнить следующее:
— сумма сопротивлений, входящих в i- й контур;
— сумма сопротивлений, общих для i- го и k- го контуров, причем ;
члены на главной диагонали всегда пишутся со знаком “+”;
знак “+” перед остальными членами ставится в случае, если через общее сопротивление i- й и k- й контурные токи проходят в одном направлении, в противном случае ставится знак “-”;
если i- й и k- й контуры не имеют общих сопротивлений, то ;
в правой части уравнений записывается алгебраическая сумма ЭДС, входящих в контур: со знаком “+”, если направление ЭДС совпадает с выбранным направлением контурного тока, и “-”, если не совпадает.
В нашем случае, для первого уравнения системы, имеем:
Следует обратить внимание на то, что, поскольку , коэффициенты контурных уравнений всегда симметричны относительно главной диагонали.
Если в цепи содержатся помимо источников ЭДС источники тока, то они учитываются в левых частях уравнений как известные контурные токи: k- й контурный ток, проходящий через ветвь с k- м источником тока равен этому току .
Метод узловых потенциалов
Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно , т.е. числу ветвей дерева .
Пусть имеем схему по рис. 4, в которой примем .
Допустим, что и известны. Тогда значения токов на основании закона Ома для участка цепи с источником ЭДС
Запишем уравнение по первому закону Кирхгофа для узла а :
и подставим значения входящих в него токов, определенных выше:
Сгруппировав соответствующие члены, получим:
Аналогично можно записать для узла b :
Как и по методу контурных токов, система уравнений по методу узловых потенциалов может быть составлена формальным путем. При этом необходимо руководствоваться следующими правилами:
1. В левой части i- го уравнения записывается со знаком “+”потенциал i- го узла, для которого составляется данное i- е уравнение, умноженный на сумму проводимостей ветвей, присоединенных к данному i- му узлу, и со знаком “-”потенциал соседних узлов, каждый из которых умножен на сумму проводимостей ветвей, присоединенных к i- му и k- му узлам.
Из сказанного следует, что все члены , стоящие на главной диагонали в левой части системы уравнений, записываются со знаком “+”, а все остальные – со знаком “-”, причем . Последнее равенство по аналогии с методом контурных токов обеспечивает симметрию коэффициентов уравнений относительно главной диагонали.
2. В правой части i- го уравнения записывается так называемый узловой ток , равный сумме произведений ЭДС ветвей, подходящих к i- му узлу, и проводимостей этих ветвей. При этом член суммы записывается со знаком “+”, если соответствующая ЭДС направлена к i- му узлу, в противном случае ставится знак “-”. Если в подходящих к i- му узлу ветвях содержатся источники тока, то знаки токов источников токов, входящих в узловой ток простыми слагаемыми, определяются аналогично.
В заключение отметим, что выбор того или иного из рассмотренных методов определяется тем, что следует найти, а также тем, какой из них обеспечивает меньший порядок системы уравнений. При расчете токов при одинаковом числе уравнений предпочтительнее использовать метод контурных токов, так как он не требует дополнительных вычислений с использованием закона Ома. Метод узловых потенциалов очень удобен при расчетах многофазных цепей, но не удобен при расчете цепей со взаимной индуктивностью.
1. Основы теории цепей: Учеб.для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
Контрольные вопросы и задачи
1. В ветви на рис. 1 . Определить ток .
2. В чем заключается сущность символического метода расчета цепей синусоидального тока?
3. В чем состоит сущность метода контурных токов?
4. В чем состоит сущность метода узловых потенциалов?
5. В цепи на рис. 5 ; ; ; . Методом контурных токов определить комплексы действующих значений токов ветвей.
6. В цепи на рис. 6 . Рассчитать токи в ветвях, используя метод узловых потенциалов.
Источник