Меню

Реле регулятор для светодиодов



Схема диммера для светодиодных ламп на 220В

Регулировать яркость освещения в комнате, где установлена люстра с несколькими лампами накаливания, не представляет труда. Берем выключатель на несколько кнопок и при необходимости включаем либо выключаем часть ламп.

Даже если люстра рассчитана на одну лампу, ее яркость можно изменять в широких пределах увеличивая либо уменьшая подаваемое напряжение. Светодиод работает в очень узком диапазоне напряжения и при его снижении просто гаснет.

Для изменения яркости светодиодных ламп используют диммер, представляющий собой ШИМ-контроллер (контроллер с широтно-импульсной модуляцией мощности).

Принцип широтно-полюсной модуляции (ШИМ)

Изменения мощности питающего напряжения при применении шим-контроллера обеспечивается благодаря подаче на коммутирующий элемент (в случае со светодиодами – полевой транзистор, симистор либо динистор) сигналов с изменяющейся скважностью.

Скважность (S) – соотношение между длительностью импульсов и паузой между ними.

S=T/T1, где Т – период импульсов, Т1 – период положительного фронта.

В ШИМ-контроллере импульсы следуют с постоянной частотой, изменяется лишь длительность пауз.

Ниже представлена принципиальная схема ШИМ-контроллера:

Увеличение ширины импульса увеличивает время поступления тока через транзистор к нагрузке, следовательно, и пропускаемый ток. Частота следования импульса значительно выше той, которую способен уловить глаз, обычно 100-200Гц, потому мерцания светодиодов мы не ощущаем. Преимущество регуляторов нагрузки на основе ШИМ-контроллеров, значительно более высокий КПД сравнительно с резистивными, поскольку избыточная нагрузка гасится, а не потребляется.

Подключение диммера в схему питания светодиодной лампы

Существует два варианта подключения:

  1. Схема подключения перед драйвером питания, когда диммируется переменное напряжение;
  2. Подключение после драйвера питания, с ШИМ-регуляцией постоянного напряжения.

Промышленные варианты диммеров для светодиодных ламп

Тип управления диммером:

  • Инфракрасный;
  • Радио;
  • Стационарный.
  • 12V;
  • 220V.

Диммер, монтируемый вместо выключателя, с пультом дистанционного управления. Обычно устанавливаются при переоборудовании обыкновенного освещения лампами накаливания на светодиодные ленты.

Диммер, устанавливаемый перед драйвером питания светодиодов на дистанционном управлении с инфракрасным управлением.

Образец с управлением через радиоканал. В отличие от инфракрасного передатчика, такой пульт способен включить освещение даже с улицы.

Выпускают образцы с механическим либо сенсорным управлением. Есть даже модели, позволяющие управлять освещением с помощью смартфона через WiFi.

Основной недостаток всех устройств – достаточно высокая цена.

Если у вас нет желания переплачивать за ненужные функции, изготовить диммер для светодиодных ламп 220в своими руками совсем не сложно.

Собираем диммер своими руками

Схема на симисторах:

В этой схеме задающий генератор построен на двух симисторах, триаке VS1 и диаке VS2. После включения схемы конденсаторы начинают заряжаться через резисторную цепочку. Когда напряжение на конденсаторе достигает напряжения открытия симистора, через них начинает течь ток, а конденсатор разряжается. Чем меньше сопротивление резистора, тем быстрее заряжается конденсатор, тем меньше скважнось импульсов.

Изменение сопротивления переменного резистора регулирует глубину стробирования в широком диапазоне. Такую схему можно использовать не только для светодиодов, но и для любой сетевой нагрузки.

Подключение диммера в качестве выключателя

Схема подключения к сети переменного тока:

Диммер на микросхеме N555

Микросхема N555 представляет собой аналогово-цифровой таймер. Важнейшее ее преимущество – способность работать в большом диапазоне питающего напряжения. Обыкновенные микросхемы с TTL логикой работают от 5В, а логическая единица у них – 2,4В. КМОП серии более высоковольтные.

Но схема генератора с возможностью изменения скважности получается достаточно громоздкая. Так же у микросхем со стандартной логикой повышение частоты уменьшает напряжение выходного сигнала, что не даёт возможность коммутировать мощные полевые транзисторы и подходит лишь для небольших по мощности нагрузок.

Таймер на микросхеме N555 идеально подходит для шим-контроллеров, поскольку одновременно позволяет регулировать и частоту, и скважность импульсов. Напряжение на выходе составляет около 70% напряжения питания, за счёт чего ей можно управлять даже мосфетовскими полевыми транзисторами с током до 9А. При крайне низкой стоимости используемых деталей затраты на сборку составят 40-50 рублей.

А эта схема позволит управлять нагрузкой на 220В с мощностью до 30 Вт:

Микросхему ICEA2A после небольшой доработки можно безболезненно заменить менее дефицитной N555. Затруднение может вызвать необходимость самостоятельной намотки трансформатора. Мотать обмотки можно на обычном Ш-образном каркасе от старого перегоревшего трансформатора на 50-100Вт. Первая обмотка — 100 витков эмалированного провода диаметр 0.224мм. Вторая обмотка — 34 витка проводом 0.75мм (площадь сечения допустимо уменьшить до 0.5мм), третья обмотка – 8 витков проводом 0.224 – 0.3мм.

Диммер на тиристорах и динисторах

Светодиодный диммер 220В с нагрузкой до 2А:

Это двухмостовая полуволновая схема состоит их двух зеркальных каскадов. Каждая полуволна напряжения проходит через свою цепочку тиристор-динистор. Глубина скважности регулируется переменным резистором и конденсатором.

При достижении определённого заряда на конденсаторе он открывает динистор, через который течёт ток на управляющий тиристор. При смене полярности полуволны процесс повторяется во второй цепочке.

Читайте также:  Регулятор давления твердотопливный котел

Диммер для светодиодной ленты

Схема диммера для светодиодной ленты на интегральном стабилизаторе серии КРЕН.

В классической схеме подключения стабилизатора напряжения, значение стабилизации задается резистором, подключённым к управляющему входу. Добавление в схему конденсатора С2 и переменного резистора превращает стабилизатор в некое подобие компаратора.

Преимущество схемы в том, что она совмещает сразу и драйвер питания и диммер, поэтому подключение не требует дополнительных цепей. Недостаток – при большом количестве светодиодов на стабилизаторе будет значительное тепловыделение, что требует установки мощного радиатора.

Как подключить диммер к светодиодной ленте зависит от задач диммирования. Подключение перед драйвером питания светодиодов позволит регулировать только общую освещённость, а если собрать несколько диммеров для светодиода своими руками и установить их на каждый участок светодиодной ленты уже после блока питания, появится возможность регулировать зональное освещение.

«Диммер» с фиксированным уровнем яркости

Номинал резисторов 100-500 кОм, мощность 1-2 Вт.

Это даже не димер, поскольку ШИМ контроллера тут и близко нет. Но идеально подойдет для тех, кто взял первый раз в руки паяльник.

Источник

Простейший регулятор яркости светодиодов

Простейшая схема регулятора яркости светодиодов, представленная в этой статье, с успехом может быть применена в тюнинге автомобилей, ну и просто для повышения комфорта в машине в ночное время, например для освещения панели приборов, бардачков и так далее. Чтобы собрать это изделие, не нужно технических знаний, достаточно быть просто внимательным и аккуратным.Напряжение 12 вольт считается полностью безопасным для людей. Если в работе использовать светодиодную ленту, то можно считать, что и от пожара вы не пострадаете, так как лента практически не греется и не может загореться от перегрева. Но аккуратность в работе нужна, что бы ни допустить короткого замыкания в смонтированном устройстве и как следствие пожара, а значит сохранить своё имущество.Транзистор Т1, в зависимости от марки, может регулировать яркость светодиодов общей мощностью до 100 ватт, при условии, что он будет установлен на радиатор охлаждения соответствующей площади.Работу транзистора Т1 можно сравнить с работой обыкновенного краника для воды, а потенциометра R1 – с его рукояткой. Чем больше откручиваешь – тем больше течёт воды. Так и здесь. Чем больше откручиваешь потенциометр – тем больше течёт ток. Закручиваешь – меньше течёт и меньше светят светодиоды.Схема регулятора Для этой схемы нам понадобятся не многочисленные детали.Транзистор Т1. Можно применить КТ819 с любой буквой. КТ729. 2N5490. 2N6129. 2N6288. 2SD1761. BD293. BD663. BD705. BD709. BD953. Эти транзисторы нужно выбирать в зависимости от того, какую мощность светодиодов вы планируете регулировать. В зависимости от мощности транзистора находится и его цена.Потенциометр R1 может быть любого типа сопротивлением от трёх до двадцати килом. Потенциометр сопротивлением три килоома лишь немного снизит яркость светодиодов. Десять килоом — убавит почти до нуля. Двадцать – будет регулировать со средины шкалы. Выбирайте, что вам подходит больше.Если вы будете использовать светодиодную ленту, то вам не придётся заморачиваться с расчётом гасящего сопротивления (на схеме R2 и R3) по формулам, потому что эти сопротивления уже вмонтированы в ленту при изготовлении и всё, что нужно, это подключить её к напряжению 12 вольт. Только нужно купить ленту именно на напряжение 12 вольт. Если подключаете ленту, то сопротивления R2 и R3 исключить.Выпускают так же светодиодные сборки, рассчитанные на питание 12 вольт, и светодиодные лампочки для автомобилей. Во всех этих устройствах при изготовлении встраивают гасящие резисторы или драйверы питания и их напрямую подключают к бортовой сети машины. Если вы в электронике делаете только первые шаги, то лучше воспользоваться именно такими устройствами.Итак, с компонентами схемы мы определились, пора приступать к сборке.Прикручиваем на болтик транзистор к радиатору охлаждения через теплопроводящую изолирующую прокладку (чтобы не было электрического контакта радиатора с бортовой сетью автомобиля, во избежание короткого замыкания). Нарезаем провод на куски нужной длинны.Зачищаем от изоляции и лудим оловом.Зачищаем контакты светодиодной ленты.Припаиваем провода к ленте.Защищаем оголённые контакты при помощи клеевого пистолета.Припаиваем провода к транзистору и изолируем из термоусадочным кембриком.Припаиваем провода к потенциометру и изолируем их термоусадочным кембриком.Собираем схему с применением контактной колодки.Подключаем к аккумулятору и опробуем в работе на разных режимах.Всё работает хорошо.Смотрите видео работы регулятора

Источник

Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория

Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.

Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.

Читайте также:  Признаки неисправности датчика регулятора холостого хода

Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория

Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.

С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.

Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».

Лампы накаливания

Электрический теплоизлучатель

В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.

Содержание статьи

Теория

Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.

Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.

Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.

Вольтампеная характеристика светодиода

Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.

Яркость свечения светодиода зависит от силы тока через него

Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.

Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.

Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.

Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.

Регулирование яркости с помощью простого реостата

Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.

Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы

Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.

Схема с биполярным транзистором

Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:

R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.

Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.

Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.

Схема стабилизатора тока на регулируемом стабилизаторе LM317

Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.

Расчёт выходного тока достаточно прост:

Расчёт выходного тока

Получается достаточно компактное решение:

Устройство для регулирования яркости светодиодов

Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:

Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.

Способы регулирования яркости: ШИМ-регулировка

ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.

Читайте также:  Регулятор форсажа дуги как пользоваться ресанта

ШИМ-регулировка

При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).

Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.

Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:

Схема ШИМ-регулятора на NE555

А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.

Подробнее про широтно-импульсную модуляцию:

Как регулировать яркость светодиодных ламп на 220В

Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.

Диммируемая светодиодная лампа

Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.

Устройство диммируемых светодиодных ламп:

Почему нельзя диммировать светодиодные лампы 220В

Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.

Светодиодный диммер

Различают такие диммеры по фронту работы:

1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:

График выходного напряжения диммера срезающего передний фронт полуволны

2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.

График выходного напряжения диммера срезающего задний фронт полуволны

Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.

Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.

Регулировка яркости светодиодных ламп – рациональное решение 12В

Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.

Светодиодные лампы на 12В

Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.

Светодиодные лампы на 12В

Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».

12-24В диммер для светодиодной ленты

Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.

Сенсорный диммер на 12 вольт

Вот пример использования такого решения:

Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.

Заключение

Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Источник