Меню

Регулятор звука для магнитофона



Не работает регулятор громкости

Ремонт энкодера автомагнитолы

Энкодер на панели автомагнитолы SONYВалкодер на панели управления автомагнитолы

В практике ремонта автомагнитол бывают случаи, когда устранение неисправности решается простой чисткой.

При длительной эксплуатации автомагнитол возникают неполадки, связанные с механическими элементами прибора. Поскольку всё управление автомагнитолой происходит через переднюю съёмную панель, то и поломке подвергаются те элементы, которые на ней установлены. Обычно это всевозможные кнопки, реже миниатюрные лампы подсветки дисплея (у более старых автомагнитол), регуляторы громкости, многоконтактный разъём, соединяющий съёмную панель с основной частью автомагнитолы.

Вы наверняка видели, что у многих автомагнитол роль регулятора громкости выполняет не набор кнопок, а валкодер. В официальной документации валкодер, как отдельную радиодеталь, принято называть энкодером, хотя по сути это одно и то же. Кроме этого данное чудо техники называют шаттлом. Но слово шаттл означает уже встроенный в прибор элемент управления, а не отдельную радиодеталь.

Валкодер
Так выглядит энкодер

Чем удобен валкодер?

Важно понять, что валкодер является частью цифровой электроники и служит он для ввода информации посредством поворота ручки регулятора. Всё управление происходит посредством изменения угла поворота ручки валкодера. Сам валкодер внешне очень похож на обычный переменный резистор, который ранее применялся в полуцифровых и аналоговых автомагнитолах для регулировки громкости.

Но если с помощью переменного резистора выполнялась лишь одна функция – регулировка звука, то с помощью валкодера возможна регулировка громкости звука, установка параметров низких и высоких частот, навигация по меню и многое, многое другое. Естественно, такая широкая функциональность возможна лишь с применением цифровой электроники.

Шаттл на панели управления муз.центра
Энкодеры можно встретить в любой технике, где применяется цифровое управление функциями.

Всё бы хорошо, валкодер вне всяких сомнений является очень удобным, компактным и многофункциональным. Но поскольку он имеет механические части конструкции, то рано или поздно он выходит из строя.

Так, при неисправности валкодера, наиболее часто имеет место следующая неисправность у автомагнитол:

При повороте ручки валкодера звук регулируется хаотично. Показания уровня громкости на дисплее также хаотично изменяются. При этом точная установка уровня громкости очень сложна и доставляет массу неудобств.

Что делать в случае, когда неисправен энкодер?

Заменять неисправный энкодер лучше новым, но что делать, если его нет в наличии или его трудно достать? В таком случае можно починить неисправный, правда, для устранения поломки потребуется разборка энкодера.

Устройство энкодера напоминает конструкцию обычного переменного резистора. Как уже говорилось, даже по внешнему виду они очень схожи.

Энкодер

Внешне энкодер очень похож на обычный переменный резистор

Обычно в энкодеры, которые применяются в цифровых автомагнитолах, встраивают микрокнопку, которая служит неким аналогом кнопки ENTER (ввода или подтверждения выбора). Эта кнопка расположена под валом регулятора (см. фото). У валкодера три вывода. Вместе с выводами от микрокнопки – 5. Также для жёсткой установки на плату предусмотрены два широких вывода от верхней планки корпуса. Они запаиваются в плату.

Энкодер в разобранном виде

Энкодер в разобранном виде

Перед тем, как приступить к разборке валкодера и его чистке необходимо выпаять его из печатной платы передней панели. На первый взгляд операция простая, но на практике процесс осложняется тем, что рядом с энкодером обычно находятся мелкие SMD элементы и есть вероятность при выпайке валкодера их повредить.

Читайте также:  Регулятор тока для сварочного аппарата b102

Поэтому для демонтажа энкодера с печатной платы лучше воспользоваться специальным инструментом для выпайки многовыводных деталей. Подробнее об этом читайте здесь.

Разбирать валкодер стоит аккуратно без применения излишней силы. Главная задача – добраться до внутренних контактов и почистить их от грязи и окислов. Можно слегка отогнуть подвижные контакты, чтобы они лучше контактировали с фиксированными контактами при скольжении.

Чистку контактов лучше производить специальными средствами. Для этого можно использовать, например, спрей-очиститель DEGREASER. Он легко наноситься на поверхность, быстро испаряется не оставляя следов, хорошо очищает от застывшей канифоли, окислов, грязи и мелкодисперсной пыли. Спрей лучше нанести на зубную щётку в небольшом количестве и затем аккуратно почистить поверхность внутренних контактов валкодера. После этого проводим сборку валкодера и впаиваем в печатную плату.

Обычно, после проведения такой чистки валкодер работает стабильно и неисправность с хаотичной регулировкой громкости больше не проявляется.

Источник

Схема электронных регуляторов громкости

С развитием стереотехники резко обострилась одна из проблем аналоговой аппаратуры — низкое качество и небольшой ресурс работы переменных резисторов, служащих регуляторами громкости. И если для моноаппаратуры еще можно подобрать переменный резистор на замену вышедшему из строя, то для стерео, особенно импортной, это практически нереально.

Электронные регулятор громкости

Найти “примерно такой же” резистор очень сложно даже в крупных городах. Причем чаще всего “ломаются” резисторы регуляторов громкости. Регуляторы тембра и баланса используются реже и служат гораздо дольше. К счастью, полный выход из строя сдвоенного (“стерео”) переменного резистора случается крайне редко. Обычно хотя бы один из резисторов полностью или частично исправен. И, “зацепившись” за эту часть регулятора. можно “вылечить” все устройство!

При этом даже не придется переводить систему в монофонический режим—достаточно просто добавить специальную микросхему электронного регулятора громкости. Такие микросхемы сравнительно дешевы, почти не искажают звук и практически не требуют подключения внешних элементов. С их помощью автор в свое время вернул жизнь не одному десятку различных магнитол, и ни один владелец не остался разочарованным.

Знать, как именно устроены подобные микросхемы — совершенно не обязательно (фактически, это операционный усилитель с электрически изменяемым коэффициентом усиления), нужно только помнить, что при уменьшении напряжения на регулирующем входе громкость обычно также уменьшается. И даже если переменный резистор “восстановлению не подлежит” — тоже не все потеряно. В таком случае можно использовать цифровой регулятор громкости, который управляется кнопками.

Такие регуляторы бывают двух типов: автономные и требующие использования дополнительного процессора. Первые (например, КА2250, ТС9153) регулируют только громкость. “Качество регулировки” — довольно скверное, но их стоимость сравнительно невелика. “Процессорные” регуляторы раза в два дороже автономных, но гораздо “круче”: и регулировка более линейная, и, помимо регулировки громкости, можно регулировать тембр, баланс, звуковые эффекты (псевдостерео — стерео из моносигнала, как у TDA8425 или псевдоквадра-стерео в микросхемах серии ТЕАбЗхх).

Есть также селектор каналов на входе и некоторые другие “примочки”. Но распространение таких регуляторов, даже несмотря на весьма выгодное соотношение цена- качество, ограничивает необходимость использования внешнего, заранее запрограммированного процессора. Специализированные запрограммированные процессоры для работы с подобными микросхемами автор в продаже не встречал.

Большинство микросхем с электронной регулировкой громкости предназначены для работы в кассетном магнитофоне. Они имеют пару чувствительных и малошумящих предварительных усилителей, пару усилителей мощности с электронной регулировкой громкости, и рассчитаны на низковольтное питание (1,8…6,0 В при потребляемом токе около 10 мА).

Читайте также:  Вакуум регулятор для молокопровода

Схема регулятора громкости на микросхеме TA8119P

Таковы микросхемы ТА8119Р ф.TOSHIBA (рис.1) и ВАЗ520 ф.POHM(рис.2). Как видно из рисунков, отличаются они только количеством выводов, а электрические характеристики у них практически совпадают. Кстати, ИМС ТА8119 выпускается только в DIP-корпусе для монтажа в отверстия. а ВА3520 — в DIP- и SOIC-корпусах (соответственно, ВА3520 и BA3520F, последняя—для поверхностного монтажа). Расстояние между рядами выводов у ТА8119 и SOIC-версии BA3520F — 7,5 мм. у ВА3520 в DIP-корпусе —10 мм.

Цифровой регулятор громкости на BA3520

Операционные усилители (ОУ) внутри — обычные, с той лишь разницей, что некоторые резисторы обратной связи уже установлены в микросхеме. Выходной ток предварительных усилителей — несколько миллиампер, выходных — около сотни миллиампер. На рисунках указаны рекомендуемые схемы включения, но, в принципе, ОУ можно включать по любой стандартной схеме, за исключением, разве что, дифференциальной.

Если слишком большое усиление не требуется, предваритепьные уси- лители можно не использовать, подав входной сигнал непосредственно на выходные усилители (их коэффициент усиления при максимальной громкости — около 7). При этом входы предварительных усилителей желательно соединить с выходом REF микросхемы. Если использовать эти микросхемы для замены переменного резистора, сигнал на входы лучше подавать через резисторы сопротивлением около 100 кОм (для компенсации усиления выходных усилителей), как показано на рис.За.

И вообще, во всех схемах с использованием ВА3520 сигнал на входы оконечных усилителей лучше подавать через резисторы сопротивлением не менее 10 кОм. Это значительно уменьшает шумы на выходе (микросхема “не любит” слишком низкоомные источники сигнала), но выход предварительного усилителя микросхемы можно соединять со входом оконечного непосредственно. К ТА8119 это тоже относится, хотя выражено гораздо слабее.

Для более плавной регулировки громкости в микросхеме ТА8119Р и ВА3520, а также для устранения “шороха” при вращении движка переменного резистора, между движком и общим проводом рекомендуется включить конденсатор емкостью 1…10 мкФ (“+” к движку). При “частичной неисправности” переменного резистора (перегорела или истерлась дорожка возле одного из крайних выводов) можно “выкрутиться”, несколько усложнив схему.

Переменный регулятор громкости на резисторе, транзисторе, микросхеме

Если перегорел контакт, к которому подводится движок резистора для установки минимальной громкости, используется схема на рис.36 или рис.Зв. Здесь резисторы R1 и R2 образуют делитель напряжения. Но следует отметить, что напряжение в средней точке такого делителя никогда не уменьшится до нуля: при указанных номиналах резисторов оно превышает 0,3 В. т.е. “нулевая” громкость недостижима.

Для устранения этого недостатка в схему добавлен повторитель на транзисторе VT1. При таком напряжении он все еще закрыт (порог открывания — около 0.6 В). В схеме на рис.3б достичь максимальной громкости также невозможно из-за упомянутого выше падения напряжения на транзисторе (около 0,6 В). Поэтому лучше использовать схему, изображенную на рис.3в.

Источник питания (+5 В) должен быть стабилизированным — иначе громкость будет “плавать”. При настройке этой схемы, возможно, понадобится подобрать сопротивления R3 и R4 для получения максимальной громкости. Если же перегорел “верхний” вывод переменного резистора, схема для его “лечения” становится еще проще (рис.Зг). Источник питания тоже должен быть стабилизированным.

Читайте также:  Регулятор для гидроручника своими руками

Но если переменный резистор “восстановлению не подлежит”, единственный выход — использование цифровых регуляторов. В принципе, такие регуляторы можно построить и на обычной цифровой логике, пропуская звуковой сигнал через микросхему цифро-аналогового преобразователя (ЦАП). Подобные схемы неоднократно публиковались в отечественной литературе начала 90-х годов, но дешевле и удобней воспользоваться специализированной микросхемой, например, КА2250 (Samsung) или ТС9153 (Toshiba).

Регуляторы громкости на ЦАПе КА2250, ТС9153

Эти микросхемы — полные аналоги по электрическим характеристикам и цоколевке (рис.4), отличия только в названии. Они являются 5-битным стереоЦАПом (шаг регулировки — 2 дБ) с довольно скзерными характеристиками регулирования и не очень сложной схемой управления. Что радует — крайне низкие искажения. По этому параметру микросхемы практически не отличаются от переменного резистора, естественно, если амплитуда входного сигнала не превышает 1,5…2,0 В и правильно разведены “земли”.

Также предусмотрено “запоминание” уровня громкости при отключении питания, но в ячейке ОЗУ, т.е. для подпитки самой микросхемы нужна батарейка или конденсатор с малой утечкой.
Для нормальной работы этих микросхем требуется внешний источник образцового напряжения (UREF)- Если у источника сигнала (предварительного усилителя) есть свое UREF. тогда просто подводим его к выводам 4,13 микросхемы (рис.4а). Если же его нет, “сооружаем” внешний делитель напряжения (R1-R2- С1 на рис.4).

В обоих случаях напряжение на выводах 4 и 13 должно быть на 1…2 В меньше напряжения питания, но выше 1…2 В относительно общего провода. Напряжение UREF d каждом канале может быть разным. Собственно регулятор громкости состоит из пары резисторных матриц, коммутируемых через высококачественные полевые транзисторы.

На рисунке эти матрицы обозначены как постоянные резисторы. Для нормального функционирования микросхемы обе матрицы должны быть соединены последовательно и, желательно, через разделительный конденсатор (С4). Так как матрицы содержат только резисторы, то, в принципе, “вход” и “выход” можно поменять местами (что иногда можно обнаружить даже в “фирменных” изделиях), но лучше этого не делать.

Цифровая часть микросхем состоит из генератора с внешними частотозадающими элементами КЗ-С7, двух кнопок SB1, SB2 и коммутатора на диодах VD1, VD2. Громкость изменяется при нажатии и удерживании соответствующей кнопки. У микросхем имеется цифровой выход. Ток через этот выход изменяется от 0 до 1,3 мА (с шагом 0,1 мА) при уменьшении/увеличении громкости. Вывод 7 микросхем служит для “выключения” — при “нуле” на этом входе генератор отключается, а потребляемый микросхемами ток уменьшается до минимума.

“Регулирующая” часть микросхем при этом работает как обычно, но изменять громкость невозможно. Для того, чтобы при отключении питания микросхема “запоминала” уровень громкости, ее желательно подключать так, как показано на рис.46. При отключении питания напряжение на входах “Uпит” уменьшается до нуля, одновременно снижается напряжение на выводе 7, и цифровая часть микросхемы “отключается”.

Сама микросхема при этом питается через батарейку, ее заряда хватает на десятки лет. В принципе, использовать батарейку не обязательно — достаточно одного конденсатора емкостью более 1000 мкф, но даже самый лучший конденсатор не “продержится” более недели. Конденсатор С2 служит для начального сброса микросхемы при включении питания, поэтому он обязателен и должен располагаться в непосредственной близости от выводов питания микросхемы.

Источник