Меню

Регулятор напряжения дизельный генератор



Регулирование напряжения в дизель-генераторах

Генераторы в современных дизель-генераторных установках выполнены по бесконтактной схеме. Это означает, что передача электрической энергии между неподвижным статором и вращающимся ротором осуществляется только посредством электромагнитных полей, без применения вращающихся колец и щеток. Бесконтактные синхронные машины не требуют периодического обслуживания щеточно-коллекторного узла и обладают высокой степенью надежности. Генераторы работают совместно с аналоговым или цифровым регулятором напряжения. Регулирование напряжения осуществляется изменением магнитного потока генератора, для чего регулятор напряжения изменяет ток возбуждения генератора.

В приведенном выражении: -напряжение на зажимах генератора; – его ток нагрузки; — внутренние сопротивление генератора; — электродвижущая сила; – магнитный поток генератора; n – частота вращения ротора; с- конструктивная постоянная.

Магнитный поток генератора нелинейным образом зависит от тока возбуждения ( ) и тока нагрузки генератора .

Из приведенных соотношений видно, что напряжение на зажимах машины будет зависеть от тока нагрузки, частоты вращения и тока возбуждения. Частота вращения синхронного генератора поддерживается постоянной, чтобы обеспечить постоянную частоту тока.

На рис 1.19 приведена схема бесконтактного синхронного генератора, работающего совместно с транзисторным регулятором напряжения. Бесконтактный генератор состоит их трёх электрических машин: подвозбудителя, возбудителя и основного генератора.

Подвозбудитель магнитоэлектрического типа, т. е. он имеет возбуждение от постоянных магнитов, которые расположены на роторе. Якорная обмотка трехфазная и размещается на статоре генератора. Подвозбудитель питает регулятор напряжения и систему управления, что делает независимым их работу от внешних источников питания. Возбудитель и основной генератор имеют электромагнитное возбуждение. Обмотка возбуждения возбудителя (ОВВ) размещена на статоре и она подключается к регулятору напряжения. Якорная обмотка многофазная и расположена на роторе. Якорная обмотка через выпрямители, расположенные на роторе, питает постоянным током обмотку возбуждения основного генератора (ВГ). Якорная обмотка основного генератора трехфазная, расположена на статоре и соединена в звезду с выведенной нейтралью. Такая конструкция генератора позволяет также уменьшить мощность регулятора напряжения, т. к. возбудитель в данном случае выполняет роль усилителя тока возбуждения основного генератора.

На представленной упрощенной схеме регулятор напряжения имеет в своем составе блок измерения напряжения (БИН), модулятор ширины управляющих импульсов (МШИ), выходной транзистор VT, работающий в ключевом режиме.

Блок измерения напряжения состоит из понижающего трехфазного трансформатора, трехфазного выпрямителя, и измерительного органа на двух стабилитронах VD1, VD2 и резисторах R2, R3. Регуляторы напряжения трехфазных генераторов регулируют среднее значение трех фазных или линейных напряжений, в данном случае регулируется среднее линейное напряжение. Усреднение напряжений выполняет трехфазный выпрямитель. Измерительный орган имеет характеристику, представленную на рис.1.20а, где: U ИО — напряжение на выходе (напряжение между точками а и б) измерительного органа; U Н — номинальное напряжение генератора. Величина напряжения генератора, подводимого к измерительному органу, может регулироваться резистором R1. С помощью этого резистора можно задавать величину напряжения генератора, которую будет поддерживать регулятор.

Модулятор ширины импульсов формирует сигналы управления (U У) транзистором, форма сигналов управления приведена на рис.1.20б. Здесь: I В -ток обмотки возбуждения возбудителя; t О – время открытого состояния транзистора; t З – время закрытого состояния транзистора; I ВСР – среднее значение тока через обмотку ОВВ.

Когда транзистор открыт напряжение питания (U П) прикладывается к обмотке возбуждения и ток в ней нарастает, когда закрыт – спадает, т. е. ток колеблется около среднего значения. Если увеличить продолжительность t О , при сохранении периода следования импульсов (показано пунктиром), то среднее значение тока будет возрастать ( ). Время открытого состояния транзистора характеризуется коэффициентом заполнения управляющих импульсов (Кγ).

.

Таким образом, изменяя коэффициент заполнения, можно регулировать ток возбуждения генератора, а, следовательно, и его напряжение.

,

где R В – сопротивление обмотки возбуждения.

Процесс стабилизации напряжения протекает следующим образом. Если к генератору подключить нагрузку, то его напряжение снизится, это приведет к уменьшению напряжения на выходе измерительного органа, вследствие чего МШИ увеличит коэффициент Кγ и ток возбуждения возбудителя будет нарастать. Повысится напряжение в якорной обмотке возбудителя, что приведет к повышению тока возбуждения основного генератора и его напряжение повысится.

Читайте также:  Расчет импульсных трансформаторов для преобразователя напряжения

В регуляторе также имеются гибкие и жесткие отрицательные обратные связи для обеспечения устойчивости системы регулирования. При параллельной работе через регулятор напряжения управляют реактивным током генератора, для чего регулятор может оснащаться датчиком реактивного тока.

1. Как осуществляется стабилизация частоты тока в дизель-генераторах?

2. Каково назначение синхронизатора в дизель-генераторах?

3. Объясните причины изменения напряжения генератора при изменении его нагрузки.

4. Как изменить величину напряжения дизель-генератора?

5. Как изменится коэффициент К γ при увеличении напряжения генератора?

Источник

Автоматические регуляторы напряжения AVR

Внимание! Акция!

Автоматические регуляторы напряжения AVR26.09.2020

Автоматические регуляторы напряжения AVR

Автоматические регуляторы напряжения AVR
В настоящее время во многих дизель-генераторных установках большой мощности используются синхронные генераторы бесщеточного типа. Технической и конструктивной особенностью таких генераторов является отсутствие коллекторно-щеточного узла, а обмотка возбуждения располагается во вращающемся роторе. Для обеспечения работы генератора нужно, чтобы индуцированный и протекающий по обмотке возбуждения ток имел необходимую амплитуду и полярность.

Чтобы выпрямить наведенное напряжение, обмотка возбуждения выполняется из двух частей, которые соединены через диод, а амплитуда индуцированного ЭДС зависит от взаимодействия магнитных полей основной и дополнительной обмоток статора. Регулируя наведенную ЭДС в обмотке возбуждения, можно гибко управлять работой генератора. Этот принцип лег в основу создания специальных управляющих электронных устройств, которые стали неотъемлемой частью современных синхронных генераторов (СГ).

Чтобы запитать обмотку возбуждения и стабилизировать вырабатываемое генератором напряжение, используются различные способы и устройства, но наибольшее распространение получили микропроцессорные автоматические регуляторы напряжения AVR. Устройство AVR – своеобразное «сердце» системы возбуждения синхронного генератора. Адаптивно регулируя ток, наведенный в обмотку возбуждения, регулятор напряжения осуществляет стабилизацию параметров на выходе СГ.

Таким же способом удается обеспечить защиту от перегрузок, которые очень опасны для всех типов генераторов, а также защиту от критичного снижения частоты. Электронный корректор напряжения запитан от одной из трехфазных обмоток статора, являющего выходом синхронного генератора, параметры которого устройство контролирует. При помощи автоматического регулятора AVR удается управлять работой генераторной станции в переходном и аварийном режиме.

Кроме того, электронный регулятор напряжения AVR способен поддерживать совместную работу нескольких СГ сходной мощности, подключенных параллельно. От настройки и точности регулировки этого устройства зависят параметры работы всей дизель-генераторной станции.

Принцип работы регуляторов AVR

Стабилизация выходного напряжения до заданного номинального значения производится посредством соответствующего увеличения или уменьшения тока в обмотке возбуждения. Таким же образом удается минимизировать колебания напряжения генератора в процессе работы, а также обеспечить быстрое достижение заданных параметров после запуска станции, необходимых для подключения и энергоснабжения потребителей.

Чтобы вовремя распознать опасность и предупредить аварию генератора, устройство контролирует изменения частоты выходного напряжения, и в случае ее критичного снижения может оперативно уменьшить, либо вообще отключить подачу напряжения на обмотку возбуждения. Эти же действия производятся при плановой или аварийной остановке двигателя. Порог частоты, при котором происходит отключение обмотки возбуждения, обычно установлен в заводских настойках на уровне 45 Гц.

Техническая реализация

Внешний вид и схемное решение устройств AVR, выпущенных различными компаниями для совместной работы с определенными моделями генераторов, могут значительно отличаться, но основные принципы их построения одинаковы. На начальном этапе создания подобных приборов типичный регулятор напряжения AVR выполнялся в виде отдельного устройства, помещенного в специальный металлический «шкаф». Сегодня в основном используются автоматические регуляторы напряжения AVR, представляющие собой небольшую плату, которая монтируется в блок возбуждения синхронного генератора.

Источник

Устройства регулирования напряжения на ДЭС

Устройства регулирования напряжения на дизельных электростанциях. Принципиальная схема дизель-генератора АД-20М. Угольный регулятор напряжения

Одним из основных требований потребителей к качеству электроэнергии является стабильность напряжения на шинах ДЭС в условиях изменения значения и характера (cosφ) нагрузки станции. При переходе от одного режима нагрузки ДЭС к другому напряжение на шинах ДЭС будет оставаться неизменным, если ток возбуждения генератора будет изменяться в соответствии с изменением нагрузки.

Поддержание стабильного напряжения генераторов дизельной электростанции (ДЭС) осуществляется устройствами (блоками) регулирования напряжения. Автоматические регуляторы напряжения по конструкции регулирующего органа подразделяются на два типа: электромеханические и электромагнитные.

Читайте также:  Скачок напряжения сгорела техника претензия образец

Электромеханические регуляторы состоят из подвижных частей (электромагнитов с подвижными якорями, пружин и др.) и воздействуют на ток возбуждения с помощью изменения активного сопротивления цепи обмотки возбуждения. К этому виду относятся угольные регуляторы, которые совместно с другой аппаратурой (трансформаторами, выпрямителями и другими деталями) входят в блок регулирования напряжения (БРН). На генераторах с машинным возбуждением серий ДГС и ПС-93-4 устанавливаются блоки БРН с угольными регуляторами возбуждения.

Электромагнитные регуляторы состоят из статических (неподвижных) частей (трансформаторов, магнитных усилителей, конденсаторов, реакторов и др.) и изменяют ток возбуждения генератора с помощью дополнительного тока от регулятора обмотки возбуждения. К этому виду регуляторов относятся компаундирующие устройства с электромагнитной коррекцией, с магнитными усилителями и др.

На генераторах серии ЕСС устанавливают БРН, выполненные на принципе компаундирования, а для увеличения точности регулирования используется электромагнитный корректор напряжения.

На генераторах серий ДГФ и ГСФ БРН выполнен на принципе фазового компаундирования с полупроводниковым корректором напряжения.

На генераторах серии СГД устанавливают регуляторы напряжения типа РНА-60, работающие на принципе фазового компаундирования с управлением от электромагнитного корректора напряжения.

Блок БРН с угольным регулятором имеет четыре исполнения: 412, 421, 422, 423. Устройство и принцип работы всех блоков БРН одинаков.

Блок БРН состоит из угольного регулятора УРН, трансформатора регулятора напряжения Тр2, стабилизующего трансформатора Тр1, селеновых выпрямителей ВС1 и ВС2, конденсаторов С1, С2 и резисторов R3, R4, R5. Все элементы БРН укреплены на каркасе и закрыты съемным кожухом.

Угольный регулятор напряжения типа УРН представляет собой прямоходовой электромеханический регулятор реостатного типа.

Угольный регулятор напряжения типа УРН-423

Рис.1. Угольный регулятор напряжения типа УРН-423.
а — общий вид; б — продольный разрез;
1 — слюдяные прокладки; 2 — фарфоровая втулка; 3,12,22,29 — винты;
4 — скоба; 5 — нажимный винт; 6 — стопорный винт;
7 — неподвижный угольный контакт; 8 — корпус регулятора;
9 — керамическая (фарфоровая) трубка; 10 — угольный столб;
11 — подвижный угольный контакт; 13 — колпак;
14 — контактная пластина; 15 — пластина для магнитопровода;
19 — стопорный винт сердечника; 20 — сердечник;
21 — основание магнитопровода; 23 — обмотка электромагнита;
24 — диамагнитная шайба; 25 — опорное коническое кольцо;
26 — пакеты пружин; 27 — якорь; 28 — пластина для крепления пружин;
30 — плунжер; 31 — амортизатор.

Регулятор типа УРН (рис.1) состоит из электромагнита с сердечником, якоря подвижной системы регулятора, над которым расположены пакеты пружин, угольных столбов, помещенных в фарфоровую трубку, расположенную на корпусе регулятора, неподвижного и подвижного угольных контактов, к которым подключены проводники.

Угольный столб 10, набранный из шероховатых отдельных шайб, включен с помощью контактов 7 и 11 в цепь обмотки возбуждения возбудителя. На угольный столб действует пружина 26, сжимающая угольные шайбы столба, и якорь 27, противодействующий сжатию пружины. Общая площадь соприкосновения угольных шайб столба, а следовательно, и его сопротивление зависят от давления, поэтому разность этих двух сил определяет сопротивление цепи обмотки возбуждения возбудителя.

При номинальном напряжении генератора подвижная система угольного регулятора находится в равновесии (усилия якоря электромагнита и пружины, сжимающей шайбы угольного столба УРН, равны). При увеличении нагрузки генератора напряжение на его выводах уменьшится, в связи с этим уменьшится ток в обмотке электромагнита УРН. Под действием пружины 26 подвижная система УРН сместится, что вызовет сжатие угольного столба и изменение (уменьшение) его сопротивления.

Уменьшение сопротивления приведет к увеличению тока в обмотках возбуждения возбудителя и генератора, напряжение на выводах генератора увеличится. При повышении напряжения генератора, вызванного сбросом нагрузки, сопротивление угольного столба Ур увеличится, а напряжение на выводах генератора уменьшится.

Принципиальная схема БРН генератора с угольным регулятором УРН

Рис.2. Принципиальная схема БРН генератора с угольным регулятором УРН.
Г — генератор; В — возбудитель;
ОВГ — обмотка возбуждения генератора;
ОВВ — обмотка возбуждения возбудителя.

Обмотка электромагнита УРН (рис.2) включена на напряжение генератора через понижающий трансформатор Тр2 и выпрямитель ВС1. Конденсаторы C1 и С2 установлены для сглаживания пульсаций выпрямленного напряжения выпрямителя ВС1.

Читайте также:  Регулятор напряжения импульсный скутер

Последовательно с первичной обмоткой Тр2 включен резистор R5, служащий для компенсации температурного изменения сопротивления обмотки Тр2.

Реостат установки РУ включен в цепь вторичной обмотки Тр2 для установки уровня автоматического peгулирования напряжения. Угольный столб УРН и резистор R3 включены последовательно в цепь обмотки возбуждения возбудителя. Резистор R3 служит для уменьшения мощности рассеивания в угольном столбе УРН. Стабилизирующий трансформатор Тр1 служит для устранения неустановившихся колебаний напряжения генератора, возникающих при работе УРН. Первичная обмотка трансформатора Тр1 включена через сопротивление R4 на напряжение якоря возбудителя, а вторичная — последовательно в цепь электромагнита УРН. Параллельно обмотке возбуждения возбудителя подключен выпрямитель ВС2 для предохранения угольного столба УРН от подгара при перенапряжениях на зажимах обмотки возбуждения возбудителя.

При уменьшении напряжения генератора напряжение на первичной и вторичной обмотках трансформатора Тр2 понизится, что вызовет уменьшение тока в цепи электромагнита УРН и сопротивления угольного столба УРН.

Использование схемы компаундирования обеспечивает точность поддержания напряжения ±5%, а применение электромагнитного корректора увеличивает точное поддержания напряжения до ±2%.

Блок регулирования напряжения с электромагнитным корректором состоит из блока компаундирования, установленного на генераторе, и блока электромагнитного корректора.

Принципиальная схема дизель-генератора АД-20М

Рис.3. Принципиальная схема дизель-генератора АД-20М

На рис.3 изображена принципиальная схема регулятора напряжения с электромагнитным корректором.

В регуляторе использован принцип фазовою компаундирования и применены три однофазных четырехобмоточных трансформатора ТТП с подмагничиванием от корректора напряжения. Одна из первичных обмоток ТТП включена последовательно с нагрузкой генератора, а другая — через линейный реактор Р параллельно нагрузке. Вторичная обмотка ТТП через выпрямитель СВ1 соединена с обмоткой возбудителя генератора.

Корректор напряжения состоит из автотрансформатора АТН, магнитного усилителя МУ и измерительного органа, имеющего нелинейный реактор НР, линейный реактор ЛP и конденсатор С2.

Небольшое увеличение напряжения на выводах генератора приводит к резкому увеличению тока реактора НР, который увеличивает ток в обмотке управления МУ. Возросший выходной ток МУ проходит через выпрямитель СВ2 и подается на обмотку подмагничивания трансформатора ТТП. Увеличение тока в обмотке подмагничивания вызовет уменьшение тока во вторичной обмотке ТТП и в обмотке возбуждения генератора, что приведет к уменьшению напряжения на выводах генератора.

При уменьшении напряжения на зажимах генератора наблюдается обратная картина. На дизель-генераторах кроме напряжения часто меняется и частота, поэтому в корректоре предусмотрена частотная компенсация.

В схеме корректора частотная компенсация осуществляется реактором ЛР и конденсатором С2, которые изменяют напряжение на реакторе ИР пропорционально изменению частоты генератора и оставляют ток HP неизменным. Эта схема обеспечивает независимость тока HP от изменения частоты и позволяет при изменении частоты от 48 до 52 Гц обеспечить изменение напряжения генератора в пределах ±2%.

Блок регулирования напряжения с полупроводниковым корректором напряжения. Полупроводниковый корректор напряжения в БРН предназначен для поддержания стабильного напряжения на выводах генератора в пределах ±2%.

Принципиальная схема полупроводникового корректора напряжения

Рис.4. Принципиальная схема полупроводникового корректора напряжения

Корректор напряжения (рис.4) собран на полупроводниковых элементах и работает в импульсном режиме. Он состоит из измерительного органа и усилителя.

Измерительный орган корректора измеряет напряжение на зажимах генератора и сравнивает его с заданным. Разность между действительным и заданным напряжениями служит сигналом, который управляет полупроводниковым усилителем, соединенным с обмоткой управления трансформатора компаундирования.

Измерительный орган состоит из трансформатора ТИ, первичная обмотка которого подключена на линейное напряжение генератора через резистор R15 и регулируемый резистор РУН, выпрямителя В1, кремниевого опорного диода В2, конденсаторов С1-С2, резисторов R1, R2, R3, R5, R6, терморезисторов R7-R9, транзистора Т1.

Напряжение генератора после выпрямителя В2 и сглаживающего фильтра R8-С1 поступает на вход транзистора Т1. Входной сигнал Т1 будет тем больше, чем больше напряжение генератора превышает опорное напряжение диода В2, т.е. измерительный орган корректора преобразует превышение напряжения генератора над опорным напряжением В2 в выходной ток транзистора Т1, поступающий на вход усилителя. Если Uг

Источник