Меню

Расчет сложных электрических цепей методом узловых напряжений



Расчёт электрических цепей по методу узловых потенциалов: методика

Возможно, для турбо-версии статьи у вас некорректно отображаются формулы. Для корректного отображения статьи посмотрите оригинальную версию.

В дополнение к выводу метода рассмотрим методику расчёта электрических цепей по методу узловых потенциалов.

Последовательность расчёта следующая.

  1. Пронумеровать все узлы и задать произвольное направление токов в схеме.
  2. Стянуть узлы с одинаковым потенциалом. Узлы будут иметь одинаковый потенциал, если между ними находится чистая ветвь с нулевым сопротивлением – закоротка (ветви между узлами 2 − 4 и 3 − 5 на рис. 1). Перерисовывать схему со стянутыми узлами не обязательно, но тогда следует учесть, что потенциалы узлов по концам закоротки будут одинаковыми.

Рис. 1. Пример объединения узлов с одинаковым потенциалом

  1. Выбрать базисный узел (рис. 2) и приравнять его потенциал нулю $ \underline<\varphi>_ <3>= 0 \space \textrm <В>$. В качестве базисного узла можно выбрать любой, за исключением случая, когда имеются особые ветви. Если в схеме есть хотя бы одна особая ветвь, то за базисный узел следует принимать один из концов одной из таких ветвей. При этом потенциал другого конца будет равен ЭДС $ \underline<\varphi>_ <1>= \underline_ <1>$, если источник напряжения направлен в этот узел, и равен минус ЭДС $ \underline<\varphi>_ <6>=- \underline_ <2>$, если источник направлен к базисному узлу.

Рис. 2. Выбор базисного узла

Примечание. Зачастую для обозначения базисного узла используют символ заземления, так как принято считать, что «земля» имеет нулевой потенциал.

  1. Составить уравнения для узлов без особых ветвей, потенциалы которых неизвестны. Уравнения записываются по следующему принципу:
  • потенциал рассматриваемого узла умножается на сумму проводимостей всех примыкающих к нему ветвей;
  • вычитаются потенциалы узлов, находящихся на противоположных концах примыкающих ветвей, умноженные каждый на свою проводимость соединяющей их ветви;
  • приравнивается алгебраической сумме примыкающих к данному узлу источников тока и источников ЭДС, последние умножаются на проводимость ветви, в которой они расположены.
    Под алгебраической суммой подразумевается необходимость учёта направленности источников, если источник направлен в рассматриваемый узел, то он записывается со знаком «+», в противном случае со знаком «-».

В случае, если имеется более одной особой ветви, и они не имеют общие узлы, то уравнения для узлов, в состав которых входит особая ветвь, не примыкающая к базисному узлу, записываются следующим образом:

  • потенциал рассматриваемого узла умножается на сумму проводимостей всех примыкающих к нему ветвей и проводимостей ветвей, примыкающих к узлу противоположного конца особой ветви;
  • вычитаются потенциалы узлов, находящихся на противоположных концах примыкающих ветвей к узлам особой ветви, умноженные каждый на свою проводимость примыкающей ветви;
  • приравнивается алгебраической сумме примыкающих к узлам особой ветви источников тока и источников ЭДС, последние умножаются на проводимость ветви, в которой они расположены, за исключением источника ЭДС особой ветви, который умножается на сумму проводимости ветвей, примыкающих к узлу противоположного конца особой ветви.
  • При составлении уравнения проводимость особой ветви не учитывается ( 1 / 0=∞). Следует также учитывать, что направление ЭДС особой ветви и соответственно её знак учитываются относительно рассматриваемого узла.
  1. Рассчитать токи в ветвях по закону Ома как алгебраическую сумму разности потенциалов и ЭДС в ветви с искомым током, делённую на сопротивление этой ветви. Вычитаемым будет тот потенциал, в который направлен ток, а знак ЭДС выбирается в зависимости от направления: в случае сонаправленности с током ЭДС берётся со знаком «+», в противном случае со знаком «-». Ток в закоротке следует искать по первому закону Кирхгофа, составленному для одного из узлов рассматриваемой ветви в исходной схеме, после расчета всех остальных токов в схеме.
  2. Правильность расчёта по методу узловых потенциалов проще всего проверить по первому закону Кирхгофа для уникальных узлов без особых ветвей, подставив полученные значения токов. Под уникальными узлами подразумеваются те узлы, при рассмотрении которых имеется хотя бы одна ветвь, не примыкающая к другим из рассмотренных узлов.

Пример решения. В качестве примера рассмотрим схему с двумя особыми ветвями и источником тока (рис. 3). Количество уравнений составляемых для нахождения узловых потенциалов равно

6 (всего узлов) – 1 (базисный узел) – 2 (узла особых ветвей) = 3.

Произвольно обозначим узлы и токи на схеме. Один из узлов одной из особой ветви (1-4 и 3-6) примем за базисный, к примеру узел 4, в таком случае $ \underline<\varphi>_ <4>= 0 $, а $ \underline<\varphi>_ <1>= \underline_ <1>$.

Рис. 3. Пример расчёта электрической схемы

В ветви 3-6 необходимо найти потенциал только одного из узлов (рассчитаем для узла 6), так как второй (потенциал узла 3) будет отличаться на значение ЭДС, т.е. $ \underline<\varphi>_ <3>= \underline<\varphi>_<6>— \underline_ <2>$. Далее необходимо составить уравнения для нахождения оставшихся потенциалов в узлах 2, 5 и 6. Следует отметить, что ёмкость ветви с источником тока не повлияет на расчёты, поскольку проводимость этой ветви бесконечно большая, а ток задаётся самим источником.

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- \underline<\varphi>_ <4>\cdot \underline_<7>— \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline<\varphi>_ <1>\cdot \underline_<2>— \underline<\varphi>_ <5>\cdot \underline_<5>— \underline<\varphi>_ <3>\cdot \underline_ <3>= 0 \\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_<3>— \underline<\varphi>_ <1>\cdot \underline_ <1>= \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Подставим известные значения потенциалов, сократив количество неизвестных:

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- 0 \cdot \underline_<7>— \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline_ <1>\cdot \underline_<2>— \underline<\varphi>_ <5>\cdot \underline_<5>— (\underline<\varphi>_<6>— \underline_<2>) \cdot \underline_ <3>= 0 \\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_<3>— \underline_ <1>\cdot \underline_ <1>= \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Перенесём все свободные составляющие в правую часть равенств и получим конечную систему уравнений с тремя неизвестными узловыми потенциалами:

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline<\varphi>_ <5>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <3>= \underline_ <1>\cdot \underline_<2>— \underline_ <2>\cdot \underline_ <3>\\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_ <3>= \underline_ <1>\cdot \underline_ <1>+ \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Для решения системы уравнений с неизвестными узловыми потенциалами, можно воспользоваться Matlab. Для этого представим систему уравнений в матричной форме:

$$ \begin \underline_ <7>+ \underline_ <5>+ \underline_ <8>& -\underline_ <5>& -\underline_ <8>\\ -\underline_ <5>& \underline_ <2>+ \underline_ <5>+ \underline_ <3>& -\underline_ <3>\\ -\underline_ <8>& -\underline_ <3>& \underline_ <8>+ \underline_ <3>+ \underline_ <1>\end \cdot \begin \underline<\varphi>_ <5>\\ \underline<\varphi>_ <2>\\ \underline<\varphi>_ <6>\end = \\ = \begin 0 \\ \underline_ <1>\cdot \underline_<2>— \underline_ <2>\cdot \underline_ <3>\\ \underline_ <1>\cdot \underline_ <1>+ \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Запишем скрипт в Matlab для нахождения неизвестных:

Примечание. Для решения в численном виде необходимо заменить символьное задание переменных реальными значениями проводимостей, ЭДС и тока источника.

В результате получим вектор-столбец $ \underline<\boldsymbol<\varphi>> $ из трёх элементов, состоящий из искомых узловых потенциалов, при этом токи в ветвях через потенциалы узлов:

Для проверки правильности расчёта можно воспользоваться уравнениями по первому закону Кирхгофа: если суммы токов в узлах 2 и 5 равны нулям, значит расчёт выполнен верно:

$$ \underline_ <5>+ \underline_<3>— \underline_ <2>= 0, $$

$$ \underline_ <5>+ \underline_<7>— \underline_ <8>= 0. $$

Итак, метод узловых потенциалов позволяет рассчитывать меньшее количество сложных уравнений для расчёта электрической цепи в сравнении с другими методами при меньшем числе узлов в сравнении с количеством контуров.

Источник

Метод узловых напряжений

Метод узловых напряжений заключается в определении на основании первого закона Кирхгофа потенциалов в узлах электрической цепи относительного некоторого базисного узла. Базисный узел в общем случае выбирается произвольно, потенциал этого узла принимается равным нулю. Разности потенциалов рассматриваемого и базисного узлов называется узловым напряжением.

На рис.29 представлена схема электрической цепи, содержащая пять ветвей и три узла. За базисный принят узел с индексом «0».

Узловое напряжение U 10=j 1-j 0. Положительное напряжение узловых напряжений указывается стрелкой от рассматриваемого узла к базисному.

Рис.29. Иллюстрация к методу узловых напряжений.

Напряжение на ветвях цепи равно, очевидно, разности узловых напряжений концов данной ветви. Например, напряжение ветви 4 равно: U 4=I 4R 4=U 10-U 20 (30)

Из формулы (30) видно, что, зная узловые напряжения, можно найти ток ветви.

Структуру уравнений получим, рассматривая схему рис.30.

Т.к. узел с индексом «0» принят за базисный, то его потенциал равен нулю. Узловые напряжения (потенциалы) узлов 1 и 2 – неизвестны.

Уравнения по первому закону Кирхгофа для 1 и 2 узлов соответственно записываются:

Узловое напряжение (32)

Аналогично для оставшихся токов:

Выражения (33,а,б) подставляем в систему (31) и после некоторых арифметических преобразований получаем:

Обозначим q 11=q 1+q 2+q 4+q 5 – собственная проводимость узла 1.

q 22=q 3+q 4+q 5 – собственная проводимость узла 2.

q 12=q 21=q 4+q 5 – взаимная проводимость ветви, соединяющей узлы 1 и 2.

Из приведенных выражений видно:

Собственная проводимость узла равна сумме проводимостей ветвей, сходящихся в данном узле.

Взаимная проводимость равна сумме проводимостей ветвей, соединяющих данные узлы.

Узловой ток (теоретическое понятие) – это алгебраическая сумма произведений E iq i и J i источников тока (если они есть) всех ветвей, примыкающих к рассматриваемому узлу. Слагаемое входит в выражение со знаком «+», если э.д.с. и источник тока направлены к узлу. В противном случае – ставится знак «-».

После введенных обозначений система (34) принимает вид:

Из формул (35) видно, что собственная проводимость входит в выражения со знаком «+», а взаимная проводимость – со знаком «-».

Для произвольной схемы, содержащей n+1 узлов, система уравнений по методу узловых напряжений имеет вид:

Число уравнений, составляемое по методу узловых напряжений, равно

где N э.д.с. – число идеальных источников э.д.с.

Пример: (общий случай)

Пример: (с идеальными э.д.с.)

Порядок расчета электрических цепей по методу узловых напряжений:

1. Выбираем произвольно базисный узел. Желательно нулевой потенциал представить тому узлу, где сходится большее количество ветвей. Если имеется ветвь, содержащая идеальную э.д.с., то базисный узел должен быть концом или началом этой ветви.

2. Составляется система уравнений для неизвестных узловых напряжений в соответствии с общей структурой этих уравнений (36).

3. Решая данную систему, находят напряжения узлов относительно базиса.

4. Токи ветвей определяют по обобщенному закону Ома:

Следствие: Если схема содержит только два узла, то в соответствие с методом узловых напряжений (в отсутствие идеальных э.д.с.) составляется только одно уравнение.

Например, для схемы рис.30:

Формула (39) носит название метода двух узлов.

Рис.30. Иллюстрация к методу двух узлов.

Узловое напряжение по методу двух узлов равно:

Пример: Дано: E 1=8B; E 5=12B; R 1=R 3=1 Ом; R 2=R 4=2 Ом; R 5=3 Ом.

Определить все токи методом узловых напряжений.

Т.к. электрическая цепь содержит три узла и не содержит ветвей с идеальными источниками э.д.с., то число уравнений, составляемых по методу узловых напряжений равно 2.

Узел 3 будем считать базисным.

В результате решения системы определяем U 13=2,8 B; U 23=-1,95 B.

Токи в ветвях определяем по закону Ома:

Метод наложения (суперпозиции).

Метод наложения основан на применении принципа наложения, который формулируется следующим образом:

Ток в любой ветви электрической цепи равен сумме токов, обусловленных действием каждого источника в отдельности, при отсутствии других источников.

Рассматриваемый принцип называют принципом независимого действия.

При действии только одного из источников напряжения предполагается, что э.д.с. всех остальных источников равны нулю, так же как равны нулю и токи всех источников тока. Отсутствие напряжения на зажимах источников напряжения равносильно короткому замыканию их зажимов. Отсутствие тока в ветви с источником тока равносильно разрыву этой ветви.

Если источник э.д.с. содержит внутреннее сопротивление, то, полагая э.д.с. равной нулю, следует оставлять в его ветви внутреннее сопротивление. Аналогично в случае источника тока с параллельной внутренней проводимостью, следует, разрывая ветвь источника (т.е. полагая J=0), оставлять включенной параллельную ветвь с внутренним сопротивлением.

Пусть в цепи действуют источники с параметрами E и J, I // n и I / n – токи n-ой ветви, создаваемые каждым из этих источников в отдельности. Искомый ток

Принцип суперпозиции применим к напряжениям, т.к. между током и напряжением рассматривается линейная зависимость (закон Ома); но не применим к мощности:

т.к. мощности – это квадратичные функции токов.

Дано: E=60B; J=2A; R 1=5Ом; R 2=20Ом; R 3=10Ом; R 4=15Ом

Источник

Читайте также:  Krauler vr pr1000d стабилизатор напряжения