Меню

Принцип действия тиристорного преобразователя напряжения



Тиристорный преобразователь постоянного тока

Для выравнивания переменного тока в постоянный требуется использование специальных устройств. Тиристорный преобразователь частоты для индукционного нагрева применяется в различных областях промышленности для регулирования напряжения и прочих параметров электрической энергии.

Принцип работы и конструкция

Для преобразования нагрузки может использоваться тиристорный или транзисторный высоковольтный преобразователь на базе IGBT. Тиристорный частотный преобразователь (ТП, ТПР или ТПЧ) – это электрическое устройство для преобразования переменного тока в постоянный, регулирования его уровня и прочих характеристик. С его помощью можно уравнивать различные параметры электрических редукторов: скорость вращения в момент пуска, угол и прочие.

Тиристорный преобразователь применяется для двигателя постоянного тока (ДПТ) вместе с системой автоматического регулирования (FR A700 в Mitsubishi Electric, Siemens Simoreg DC Master, Omron Yaskawa). Он имеет очень широкую область применения благодаря своим достоинствам:

  1. Высокий показатель КПД – до 95 % (к примеру, у модели ПН-500);
  2. Широкий спектр контроля. Его можно использовать для двигателя с мощностью от десятых киловатта до нескольких мегакиловатт;
  3. Способность выдерживать сильные импульсные нагрузки при включении электродвигателя в сеть;
  4. Высокие показатели надежности и долговечности;
  5. Точность в работе.

Но у такой системы есть определенные недостатки. В первую очередь – это низкий коэффициент мощности, который проявляется при глубоком регулировании производственных процессов. Компенсировать его можно при помощи дополнительных устройств. Кроме этого, мощный преобразователь вызывает помехи в электрической сети, что сказывается на работе чувствительного электро- и радиооборудования.

  1. Трансформатор или реактор;
  2. Выпрямительные блоки;
  3. Дополнительный реактор, сглаживающий преобразование;
  4. Система защиты оборудования от перенапряжений.

Большинство современных преобразователей подключаются к трансформатору через реактор. Трансформатор в этой схеме является согласующим звеном между входящим и выходным напряжением, он уравновешивает разницу между ними. Помимо него, электросхема также включает в себя специальный сглаживающий реактор. Этот прибор необходим для нейтрализации определенных пульсаций, возникающих при выпрямлении и изменении типа тока. Но система не всегда включает в себя реактор, т. к. при достаточной индуктивности асинхронного двигателя в нем нет необходимости.

Агрегат пропускает через автономный инвертор (расположенный во входящем звене) первичную нагрузку. Они попадают в выпрямляющие блоки, установленные в выходном звене. Для подключения других индукционных потребителей используются специальные шины, которые помогают выравнивать питание в целой группе устройств.

Такой преобразователь бывает низкочастотный и высокочастотный. В зависимости от потребных частот и имеющихся параметров электричества подбирается нужная модель. Нужно отметить, что в станках, где используется трехфазный ток, применяется другой тип подключения. Однофазный переносит воздействия и преобразования, в то время как на преобразовании трехфазного тока теряется КПД.

Система используется в плавке металлов, сварочных работах, контроле кранового механизма и многих других производственных и технологических процессах. Применение такого принципа работы позволяет реализовать систему генератор-двигатель без использования генератора. Благодаря этому производится широкая регулировка частот вращения шпинделя даже на самых малых скоростях, настраиваются механические и другие характеристики электропривода и прочие параметры.

Разработка

Электрическая схема тиристорный преобразователь-двигатель (к примеру, КТЭ) для плавного переключения может быть двух видов:

  1. Однофазной;
  2. Многофазной.

В зависимости от типа исполнения варьируются соотношения расчетных единиц и принципы работы преобразователя.

На этом чертеже схематически показано изменение электрической энергии при работе тиристорного преобразователя в режиме выпрямителя и инвертора. В то же время, для мостовой схемы можно сделать такую же диаграмму, но только состоящую из двух нулевых. Именно она наиболее часто используется при проектировании преобразователя для станочного оборудования. Это происходит из-за того, что исходное фазовое напряжение в ней в два раза превышает фазовой напряжение (Udo) в нулевой схеме работы.

Однофазная схема используется для контроля питания и работы привода машин с высоким индуктивным сопротивлением. Она работает в пределах мощности от 10 кВт до 20, намного реже – при больших мощностях. К примеру, подойдет для электрической печи, домашнего станка.

Читайте также:  Постоянно напряжение во рту

Трехфазная используется для оборудования, где требуется от 20 кВт для работы. К примеру, для синхронных приводов, двигателя крана и экскаватора. Еще одной популярной многофазной схемой контроля является шестифазная (Кемрон). Её проект предусматривает использование в конструкции уравнительного реактора, который направлен на контроль низкого напряжения и высокого тока. Этот силовой электрический прибор пропускает и преобразовывает электрическую энергию параллельным путем, а не последовательным (как большая часть аналогичных устройств). Его более сложно разработать своими руками, но степень надежности и эффективности значительно больше, нежели у однофазного тиристорного преобразователя. Но такой реверсивный контроллер имеет серьезный недостаток – его КПД менее 70 %.

Своими руками можно сделать собственный преобразователь, но многое зависит от используемой базы. Внизу дана схема, разработанная на основе Micro-Cap 9. Главной особенностью этой модели является необходимость в совместном моделировании различных узлов.

Видео: как работают тиристорные преобразователи

Техническое описание и обзор цен

Характеристики тиристорных преобразователей зависят от типа их исполнения и функциональных особенностей.

Источник

Тиристорный преобразователь частоты и принцип его работы

Преобразователи частоты в схемах подключения двигателя пользуются большой популярностью и спросом, поскольку позволяют строить стабильные и управляемые системы, которые без таких электронных схем спроектировать и внедрить затруднительно. К таким специфическим применениям, связанным с работой синхронных и асинхронных двигателей, относят:

  • необходимость обеспечить плавный, безопасный пуск и остановку электромотора;
  • потребность обеспечить необходимый крутящий момент на низких оборотах и при выходе на номинальный режим;
  • потребность регулировки частоты вращения ротора в широких пределах;
  • создание экономичных систем;
  • разработку систем на базе электромоторов с обратной связью, при помощи которой регулируется состояние системы.

Это достаточно сложная задача, учитывая, что мощные электродвигатели, особенно двигатели трехфазного тока, работают при достаточно высоких напряжениях, мощностях и, соответственно, большой силе тока. Поэтому первые регуляторы частоты были созданы на основе тиристоров, которые появились значительно раньше мощных IGBT-транзисторов. Cхемотехника тиристорных регуляторов частоты вращения электромотора достаточно проста и может быть реализована даже без применения сложных контроллеров, интегральных микросхем и микропроцессоров.

В первых разработках частотных преобразователей на тиристорах использовались временные цепи с регулировкой, построенной на базе конденсаторов и резисторов, которые задают собственную частоту колебаний системы.

Особенности тиристоров

Такой радиоэлектронный компонент, как тиристор, можно условно представить как управляемый диод. Когда на управляющий электрод не подается напряжение, тиристор закрыт и не пропускает ток в обоих направлениях. Когда на управляющий электрод подается напряжение, тиристор начинает работать как диод, то есть пропускает ток только в одном направлении. Эта их особенность широко используется в регуляторах мощности электрического тока — диммерах, где тиристор работает в режиме отсечения части полуволны электрического тока и пропускает в нагрузку только часть мощности. Для более плавной регулировки в таких схемах используется два тиристора, включенных навстречу друг другу, чтобы пропускать положительную и отрицательную составляющую переменного тока.

При определенном подборе RC-цепочки возможно создание простого генератора на основе тиристора, который питается от постоянного тока. Эти особенности и стали основой различных схемотехнических решений, которые позволяют получать от сети 220 В и 50 Гц переменный электрический ток, частота которого может изменяться практически от 0 и значительно превышать частоту питающей сети. Более сложные решения позволяют получать от однофазной сети напряжение для питания трехфазных двигателей, а также управлять работой трехфазных моторов, подключенных через такой преобразователь к трехфазной сети.

Необходимо отметить, что несмотря на достаточно старый тип подобных систем управления частотой вращения двигателя, тиристорные преобразователи частоты до сих пор широко применяются, особенно для управления мощной нагрузкой в десятки киловатт. При этом их схемотехническое решение, как правило, значительно дешевле современных систем управления на базе транзисторов с микропроцессорным управлением. Впрочем, современные тиристорные преобразователи частоты также имеют сложное электронное управление, которое обеспечивает:

  • согласованность плеч управления напряжением и частотой;
  • обратную связь по контролируемому критерию работы системы;
  • защиту как самого преобразователем, так и подключенной нагрузки от различных внештатных аварийных ситуаций.
Читайте также:  Прибор определяющий скачки напряжения

Тем не менее, несмотря на простоту решений схемотехники на тиристорах, преобразователи на их основе имеют ряд недостатков, постепенно вытесняющих их из промышленного использования. К ним относят:

  • достаточно объемную элементную базу, которая не позволяет создавать компактные решения;
  • необходимость использования дросселей, согласующих трансформаторов (реакторов),которые при больших мощностях нагрузки отличаются значительными габаритами и стоимостью;
  • сложности в формировании чистого синусоидального сигнала на выходе тиристорного частотного преобразователя;
  • принципы работы тиристора, основанные на отсечении части волны электрического тока. Это приводит к тому, что тиристорный ключ становится источником мощных электромагнитных помех в широком гармоническом спектре, который может влиять на работу оборудования расположенного в непосредственной близости или подключенного к той же питающей сети.

Кроме того, ТПЧ должен быть оборудован хорошо отлаженной схемой управления, поскольку тиристор, в отличие от транзистора, открывается полностью при достижении на управляющем электроде заданного значения напряжения. Как правило, в тиристорных схемах устройств управления частотой используется несколько тиристоров, и синхронность их работы должна быть настроена точно и согласованно, поскольку только в этом случае можно добиться высокого КПД преобразователя и максимальной точности управления нагрузкой.

Рассмотрим особенности нескольких типовых схем работы тиристорных преобразователей частоты.

ТПЧ с непосредственной гальванической связью с сетью питания

Это решение можно назвать одним из наиболее простых в плане реализации принципа управления электродвигателем. Такая схема позволяет генерировать на выходе питающие напряжения с заданной частотой и фазой. Необходимо подчеркнуть, что частота выходного сигнала не может превышать частоту питающего напряжения, поэтому такие системы применяют, в основном, для мощных низкооборотных двигателей.

Схемотехническое решение включает в себя комбинацию тиристорных электронных ключей, которые могут быть:

  • управляемыми;
  • неуправляемыми;
  • включены встречно-параллельно;
  • включены по схеме мост;
  • подключены перекрестно;
  • соединены по нулевым схемам.

Все эти соединения используются в одном ТПЧ с гальванической связью и обеспечивают формирование выходного синусоидального сигнала из фрагментов входного синусоидального сигнала. Эти фрагменты формируются таким образом, чтобы получить сигнал на выходе с требуемой частотой и фазой.

Однако такое внешне простое схемотехническое решением обладает рядом недостатков, к которым можно отнести:

  • сложную форму выходного сигнала. Она не синусоидальна, поэтому может приводить к появлению дополнительных вибраций, а также гармонических помех в питающей сети;
  • ограниченность в частоте вращения двигателя, которая, как правило, не может превышать номинальную частоту питающей сети;
  • сложную схему управления ключами, которая либо требует сложной настройки, либо использования цифровой системы управления, сложности и стоимость которой также достаточно велики.

Вместе с тем, у такого решения есть и преимущества, благодаря которым оно до сих пор используется для управления электромоторами, работающими на невысоких оборотах и в режиме значительной нагрузки. Среди преимуществ этого решения можно назвать:

  • стоимость оборудования. Цена такого ТПЧ значительно ниже, чем стоимость частотного преобразователя на транзисторных элементах с аналогичными параметрами мощности нагрузки и диапазона регулирования;
  • высокий КПД системы, находящийся в пределах 95%;
  • сохранение амплитуды напряжения входной сети на выходе преобразователя;
  • возможность работы в рекуперативном режиме, когда двигатель используется в режиме генератора при торможении;
  • простую возможность модернизации ТПЧ при увеличении мощности нагрузки путем добавления параллельных тиристорных модулей, при этом мощность теоретически можно наращивать практически до бесконечности.

ТПЧ с выпрямителем и инвертором

Если на выходе преобразователя частоты требуется получить ее значение, которое превышает частоту питающей сети и номинальную частоту работы двигателя, приходится использовать более сложные схемы с выпрямителем и генератором частоты. Схемотехническое решение такого устройства на тиристорах включает следующие ключевые блоки:

  • выпрямительный модуль, который также может быть построен на нескольких тиристорах;
  • фильтр постоянного тока, задачей которого является сглаживание пульсаций выпрямленного напряжения. В зависимости от модификации преобразователя частоты с двойным преобразованием может использоваться либо дроссельный, либо комбинированный фильтр с катушкой индуктивности и конденсатором;
  • генератор выходного напряжения с изменяемой частотой выходного тока;
  • схема управления работой преобразователя, которая, как правило, строится на современных цифровых компонентах, в том числе и микропроцессорных.Задача такой схемы – обеспечить стабильность частоты на выходе преобразователя, а также регулировать параметры работы преобразователя по цепям обратной связи и обеспечивать защиту нагрузки и самого устройства от аварийных ситуаций.
Читайте также:  Принцип работы мультиметра при измерении напряжении

По особенностям схемотехники ТПЧ, построенного по такой схеме, различают преобразователи с инвертором тока и инвертором напряжения, область применения которых может отличаться. Инвертор тока характеризуется обеспечением на нагрузке постоянной амплитуды силы тока. При использовании дополнительных схемотехнических решений можно обеспечить возможность рекуперации электроэнергии, что важно при использовании оборудования в системах с частой остановкой и пуском электродвигателя или при необходимости его реверсивной работы.

Преобразователи, построенные по схеме инвертора напряжения, обеспечивают постоянное напряжение на выходе, причем его величина не изменяется при увеличении силы тока, естественно в рамках паспортных характеристик ТПЧ.

К преимуществам таких ТПЧ с двойным преобразованием принято относить:

  • широкий диапазон регулировки частоты вращения электромотора. При этом в режиме преобразователя тока пределы регулировки частоты напряжения на выходе составляют от 0 до 125 Герц, а при работе в режиме источника напряжения выходная частота генератора может достигать полутора тысяч Герц;
  • выходной сигнал такого ТПЧ с двойным преобразованием максимально приближен к синусоидальному, поэтому создается минимум гармонических помех, обеспечивается работа двигателя в штатном режиме, и не требуется дополнительная синхронизации частоты питающей сети и выходного напряжения;
  • число тиристорных ключей в таких преобразователях меньше,чем у ТПЧ с гальванической связью, поэтому устройства этого типа имеют более простую схему управления, следовательно они проще в первичной настройке и ремонте;
  • выходной генератор в таких преобразователях нечувствителен к коротким замыканием в нагрузке, которые не приводят к его выходу из строя.

Есть у этой технологии и недостатки, среди которых:

  • невозможность подключать ТПЧ инверторного типа к нагрузке, состоящей из группы электромоторов;
  • дороговизна компонентов фильтра, включаемого после выпрямителя;
  • необходимость использования дополнительной схемотехники для обеспечения рекуперации электроэнергии;
  • зависимость фазового сдвига от степени нагрузки на электромотор.

На сегодняшний день ТПЧ с двойным преобразованием является одним из самых популярных и доступных решений и успешно конкурирует с частотными преобразователями на транзисторах.

Также необходимо отметить, что тиристорные системы регулировки частоты вращения электромоторов используются не только на низковольтных схемах питания до 1000 Вольт, но и на высоковольтных, которые могут работать при питающем напряжении до 6 киловольт и выше. Транзисторных аналогов для решения таких производственных задач на сегодняшний день не существует.

Подводя итог, можно сказать, что несмотря на достаточно устаревший тип таких преобразователей и худшие параметры управляемости и качества выходного сигнала по сравнению с транзисторными и преобразователями частоты, ТПЧ всё еще используются, особенно там, где нет необходимости поддерживать высокоточный режим работы электромотора и нужно:

  • обеспечить большой крутящий момент на низких оборотах мощных электродвигателей;
  • управлять высоковольтными моторами, питание которых превышает 660 Вольт;
  • создать оптимальное по стоимости и функциональности решения без переплаты за более современное, но более дорогое оборудование.

Наша компания “IES-drives” предлагает широкий ассортимент оборудования для управления электродвигателями и системами на их основе. Мы предлагаем частотники разных производителей и серий, как универсальные, так и специализированные, в том числе и на тиристорной элементной базе.

Кроме частотных преобразователей мы также предлагаем услуги по подбору оборудования, разработке промышленных систем на его основе, их наладки, обслуживанию и ремонту.

Если вам требуется подобрать оптимальный вариант частотников для решения конкретной производственной задачи, вы всегда можете обратиться за помощью к специалистам нашей компании.

Источник