Меню

При плоском поперечном изгибе нормальные напряжения по ширине сечения балки выберите один ответ



6.2. Напряжения в поперечном сечении стержня при плоском изгибе

Задача 6.2.1: При плоском поперечном изгибе нормальные напряжения по ширине сечения балки …

1) распределяются по закону квадратной параболы; максимальное значение принимают посередине, а по краям равны нулю;

2) распределяются равномерно;

4) распределяются по линейному закону; максимальны по краям; равны нулю посередине.

Решение:

1) Ответ неверный! Указано распределение касательных напряжений по высоте балки при изгибе. По ширине сечения балки нормальные напряжения при изгибе распределяются равномерно.

2) Ответ верный. По ширине сечения балки нормальные напряжения при изгибе распределяются равномерно.

3) Ответ неверный! По ширине сечения балки нормальные напряжения при изгибе распределяются равномерно.

4) Ответ неверный! Указано распределение нормальных напряжений по высоте балки при изгибе. По ширине сечения балки нормальные напряжения при изгибе распределяются равномерно.

Задача 6.2.2: При плоском изгибе стержня нормальные напряжения по высоте поперечного сечения…

1) изменяются по закону квадратной параболы; в самых верхних и нижних точках поперечного сечения равны нулю и достигают максимума на нейтральной линии;

2) не изменяются;

3) имеют линейный закон распределения; равны нулю на нейтральной линии и достигают максимума в точках, наиболее удаленных от нее;

4) имеют линейный закон распределения; достигают максимума на нейтральной линии и равны нулю в точках, наиболее удаленных от нее.

Решение:

1) Ответ неверный! Здесь описано распределение касательных напряжений по высоте балки прямоугольного сечения. Нормальные же напряжения при изгибе имеют линейный закон распределения по высоте поперечного сечения .

2), 4) Ответ неверный! Допущена ошибка в применении формулы .

3) Ответ верный. Нормальные напряжения при плоском изгибе по высоте поперечного сечения стержня имеют линейный закон распределения . Они достигают максимума в точках, наиболее удаленных от нейтральной линии , и равны нулю на нейтральной линии.

Задача 6.2.3: Вывод формулы для определения нормальных напряжений при чистом изгибе основывается на…

1) законе парности касательных напряжений и теореме Кастильяно;

2) гипотезе наибольших касательных напряжений и гипотезе об удельной потенциальной энергии формоизменения;

3) гипотезе наибольших нормальных напряжений и гипотезе наибольших линейных деформаций;

4) гипотезе плоских сечений и гипотезе об отсутствии взаимного надавливания продольных слоев балки.

Решение:

1) Ответ неверный! Закон парности касательных напряжений и теорема Кастильяно не используются при выводе формулы для определения нормальных напряжений при чистом изгибе.

2) Ответ неверный! Эти гипотезы являются гипотезами прочности (пластичности), т.е. гипотезами причины разрушения материала или возникновения в нем состоянии текучести. Гипотезы прочности позволяют оценить прочность материала при любом напряженном состоянии, если из опыта известна его прочность при растяжении.

3) Ответ неверный! Эти гипотезы являются гипотезами прочности (разрушения), т.е. гипотезами причины разрушения материала или возникновения в нем состоянии текучести. Гипотезы прочности позволяют оценить прочность материала при любом напряженном состоянии, если из опыта известна его прочность при растяжении.

4) Ответ верный. Вывод формулы для определения нормальных напряжений при чистом изгибе основывается на гипотезе плоских сечений и гипотезе отсутствия взаимного надавливания продольных слоев балки.

Задача 6.2.4: Прямоугольная балка имеет два варианта расположения поперечного сечения. Отношение наибольших нормальных напряжений для этих двух вариантов равно…

1) 2; 2) 1,5; 3) 1; 4) 0,5.

Решение:

1) Ответ верный. Наибольшие напряжения в указанных случаях определяются следующим образом: , , где моменты сопротивления изгибу равны , . Следовательно, искомое отношение : .

2), 3) Ответ неверный! Нормальные напряжения распределяются по высоте сечения согласно формуле . Тогда наибольшие напряжения равны .

4) Ответ неверный! Допущена ошибка в нахождении момента сопротивления изгибу. Момент сопротивления изгибу прямоугольного сечения находится по формуле , где В – ширина сечения, Н – его высота.

Задача 6.2.5: Направление касательных напряжений, передающихся через ступенчатый разрез от правой части балки на левую, показано на рисунке…

1) ; 2) ;

3) ; 4) .

Решение:

1) Ответ неверный! Допущена ошибка в определении направления поперечной силы. В данном сечении поперечная сила действует вертикально сверху вниз. На площадках ab и cd касательные напряжения совпадают по направлению с поперечной силой.

Читайте также:  Как соединять провода разного напряжения

На площадках ab и cd касательные напряжения совпадают по направлению с поперечной силой , а на площадке bc их направление подчиняется закону парности касательных напряжений.

3), 4) Ответ неверный! Допущена ошибка в определении направления касательных напряжений на площадке bc. На площадке bc направление касательных напряжений подчиняется закону парности.

Задача 6.2.6: Схема нагружения балки прямоугольного сечения с размерами представлена на рисунке. Сила F и размер l заданы. Значение нормального напряжения в точке «К» сечения равно …

1) ; 2) ; 3) ; 4) .

Решение:

1) Ответ неверный! Допущена ошибка при вычислении изгибающего момента в сечении , который равен .

2) Ответ верный. Воспользуемся формулой для определения нормальных напряжений при плоском поперечном изгибе: где − изгибающий момент в сечении балки, в котором определяются нормальные напряжения; − осевой момент инерции сечения относительно главной центральной оси, перпендикулярной плоскости действия изгибающего момента; − расстояние от главной центральной оси до точки, в которой определяется нормальное напряжение. В сечении значение изгибающего момента Осевой момент инерции прямоугольного сечения относительно главной центральной оси найдем по формуле При заданных значениях b и h получим Расстояние у от главной центральной оси до точки «К» равно b. Следовательно,

3) Ответ неверный! Допущена ошибка при вычислении осевого момента инерции сечения.

4) Ответ неверный! Допущена ошибка при определении значения y.

Тема: Напряжения в поперечном сечении стержня при плоском изгибе Эпюра распределения нормальных напряжений по высоте сечения балки I–I с размерами b и h имеет вид …

Источник

Напряжения в поперечных сечениях балки при поперечном изгибе

При наличии в поперечном сечении балки внутреннего изгибающего момента Мuх смежные поперечные сечения, оставаясь плоскими (гипотеза плоских сечений), поворачиваются относительно друг друга вокруг нейтральной оси сечения (линии пересечения сечения с нейтральным слоем балки), которой в рассматриваемом случае является ось х–х. При этом, в сечении возникают нормальные напряжения s (по одну сторону нейтральной оси – сжимающие, по другую – растягивающие), которые постоянны по ширине сечения, а по высоте изменяются по линейному закону (рис. 4.4):

где — момент инерции сечения относительно нейтральной оси х–х;

у — расстояние от нейтральной оси до рассматриваемой точки сечения.

Из формулы (4.3) следует, что максимальные нормальные напряжения при изгибе возникают в точках, наиболее удаленных от нейтральной оси:

где – момент сопротивления сечения изгибу относительно оси Х.

Для круглого сечения:

Рисунок 4.4 – Распределение нормальных напряжений по поперечному сечению балки при изгибе

Рисунок 4.5 – Прямоугольное сечение

Для прямоугольного сечения (рис. 4.5):

При наличии в поперечном сечении внутренней перерезывающей силы Qy смежные сечения сдвигаются относительно друг друга в направлении Qy, что вызывает появление в сечении касательных напряжений t, которые для прямоугольных сечений и составленных из прямоугольников параллельны Qy, по ширине сечения постоянны, а по высоте изменяются согласно формуле Журавского (рис. 4.6):

где — статический момент относительно нейтральной оси х–х части поперечного сечения, расположенной выше или ниже уровня у рассматриваемой точки;

b(у) — ширина сечения на уровне рассматриваемой точки;

Jx — момент инерции сечения относительно нейтральной оси х–х.

Рисунок 4.6 – Распределение касательных напряжений по прямоугольному поперечному сечению балки при поперечном изгибе

Подбор сечений балок

Для большинства встречающихся на практике длинных балок нормальные напряжения значительно выше касательных, поэтому необходимое сечение балок, как правило, находят из условия прочности по нормальным напряжениям, которое для материалов, одинаково сопротивляющихся растяжению и сжатию, имеет вид

Сечение, полученное из условия прочности (4.6), проверяют по касательным напряжениям ( ). Проверка эта делается для сечения с максимальной перерезывающей силой. Для тонкостенных (тавровых, двутавровых и коробчатых) балок делается дополнительная проверка по эквивалентным напряжениям ( ) для точек стенки в месте их перехода в полку, где одновременно могут быть значительными как нормальные, так и касательные напряжения (рис. 4.7). Проверка эта делается для сечений, где одновременно действуют большие внутренние изгибающий момент и перерезывающая сила.

Читайте также:  Длина проводов высокого напряжения

а – точки стенки в месте перехода её в полки

Рисунок 4.7 – Эпюры распределения σ и τ в двутавровом сечении при поперечном изгибе

В окрестности точки а (см. рис. 4.7) плоскостями, параллельными координатным, выделим элемент в виде бесконечно малого прямоугольного параллелепипеда (рис. 4.8). По боковым граням этого элемента будут действовать напряжения sa и ta. Согласно закону парности касательные напряжения, равные по величине ta, будут действовать также по верхней и нижней его граням. Нормальные напряжения по этим граням для поперечных сечений, взятых на достаточном удалении от внешних сил, будут равны нулю. Две грани (передняя и задняя) свободны от напряжений. Таким образом, выделенный элемент испытывает плоское напряженное состояние.

Рисунок 4.8 – К определению эквивалентных напряжений при поперечном изгибе

Для данного вида плоского напряженного состояния по III теории прочности (максимальных касательных напряжений)

по IV теории прочности (энергетической)

Можно считать, что в рассматриваемом случае sэкв — это условное нормальное напряжение в рассматриваемой точке сечения, которое в ее окрестности создает напряженное состояние равноопасное тому, которое создают одновременно реально действующие в ней s и t.

Пример расчета

Для заданной схемы балки (рис. 4.9) построить эпюры внутренних перерезывающих сил и изгибающих моментов. Из условия прочности балки по нормальным напряжениям подобрать круглое, прямоугольное (с отношением h/b=2) и двутавровое сечения. Для наиболее экономичного сечения произвести полную проверку балки на прочность. Материал балки – Ст. 3.

[σ]=160 МПа; [τ]=100 МПа.

Определение реакций опор

Рисунок 4.9 – Расчетная схема балки (а) и эпюры перерезывающих сил (б) и изгибающих моментов (в)

Источник

ПроСопромат.ру

Технический портал, посвященный Сопромату и истории его создания

Нормальные напряжения при изгибе

При выводе формулы для вычисления нормальных напряжений рассмотрим такой случай изгиба, когда внутренние силы в сечениях балки приводятся только к изгибающему моменту, а поперечная сила оказывается равной нулю. Этот случай изгиба носит название чистого изгиба. Рассмотрим средний участок балки, подвергающийся чистому изгибу.

2015-04-18 18-51-23 Скриншот экранаВ нагруженном состоянии балка прогибается так,что ее нижние волокна удлиняются,а верхние укорачиваются.2015-04-18 18-53-48 Скриншот экрана

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем. Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линией или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки. Нейтральная линия — это линия, в которой нормальные напряжения равны нулю.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений (гипотеза Бернулли). Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе.

Допущения для вывода формул нормального напряжения: 1) Выполняется гипотеза плоских сечений. 2) Продольные волокна друг на друга не давят (гипотеза о ненадавливании) и, следовательно, каждое из волокон находится в состоянии одноосного растяжения или сжатия. 3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми. 4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости. 5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков. 6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

Рассмотрим балку произвольного сечения, но имеющую ось симметрии.2015-04-18 19-24-58 Скриншот экранаИзгибающий момент представляет собой результирующий момент внутренних нормальных сил2015-04-18 19-27-34 Скриншот экрана, возникающих на бесконечно малых площадках и может быть выражен в интегральном виде: 2015-04-18 20-15-56 Скриншот экрана (1), где y — плечо элементарной силы относительно оси х

Читайте также:  Отключить при превышении напряжения

Формула (1) выражает статическую сторону задачи об изгибе прямого бруса, но по ней по известному изгибающему моменту нельзя определить нормальные напряжения, пока не установлен закон их распределения.

Выделим на среднем участке балки и рассмотрим участок длиной dz, подвергающийся изгибу. Изобразим его в укрупненном масштабе.

К выводу формул при изгибе: а) участок балки до деформации; б) участок балки после деформации

К выводу формул при изгибе: а) участок балки до деформации; б) участок балки после деформации

Сечения, ограничивающие участок dz, параллельны друг другу до деформации, а после приложения нагрузки повернутся вокруг своих нейтральных линий на угол 2015-04-18 20-27-22 Скриншот экрана. Длина отрезка волокон нейтрального слоя при этом не изменится и будет равна:2015-04-18 20-30-57 Скриншот экрана, где 2015-04-18 20-31-30 Скриншот экрана -это радиус кривизны изогнутой оси балки. А вот любое другое волокно, лежащее ниже или выше нейтрального слоя, изменит свою длину. Вычислим относительное удлинение волокон, находящихся от нейтрального слоя на расстоянии у. Относительное удлинение — это отношение абсолютной деформации к первоначальной длине ,тогда:

2015-04-18 20-40-28 Скриншот экрана Сократим на2015-04-18 20-27-22 Скриншот экрана и приведем подобные члены, тогда получим:2015-04-18 20-42-00 Скриншот экрана(2) Эта формула выражает геометрическую сторону задачи о чистом изгибе: деформации волокон прямо пропорциональны их расстояниям до нейтрального слоя.

Теперь перейдем к напряжениям, т.е. будем рассматривать физическую сторону задачи. в соответствии с допущением о ненадавливании волокон используем закон Гука при осевом растяжении-сжатии:2015-04-18 21-37-15 Скриншот экрана, тогда с учетом формулы (2) имеем2015-04-18 21-38-26 Скриншот экрана (3),т.е. нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону. На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю. Подставим (3) в уравнение (1) и вынесем за знак интеграла дробь 2015-04-18 21-41-53 Скриншот экрана как постоянную величину, тогда имеем2015-04-18 21-44-49 Скриншот экрана. Но выражение 2015-04-18 21-45-28 Скриншот экрана — это осевой момент инерции сечения относительно оси х — Iх. Его размерность см 4 , м 4

Тогда2015-04-18 21-48-38 Скриншот экрана ,откуда2015-04-18 21-51-09 Скриншот экрана (4) ,где2015-04-18 21-52-02 Скриншот экрана — это кривизна изогнутой оси балки, а2015-04-18 21-53-03 Скриншот экрана — жесткость сечения балки при изгибе.

Подставим полученное выражение кривизны (4) в выражение (3) и получим формулу для вычисления нормальных напряжений в любой точке поперечного сечения:2015-04-18 21-56-56 Скриншот экрана (5)

Т.о. максимальные напряжения возникают в точках, наиболее удаленных от нейтральной линии. Отношение 2015-04-18 22-01-02 Скриншот экрана (6) называют осевым моментом сопротивления сечения. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Тогда максимальные напряжения: 2015-04-18 22-02-34 Скриншот экрана (7)

Условие прочности при изгибе:2015-04-18 22-05-04 Скриншот экрана (8)

При поперечном изгибе действуют не только нормальные, но и касательные напряжения,т.к. имеется поперечная сила. Касательные напряжения усложняют картину деформирования, они приводят к искривлению поперечных сечений балки, в результате чего нарушается гипотеза плоских сечений. Однако исследования показывают, что искажения, которые привносят касательные напряжения, незначительно влияют на нормальные напряжения,подсчитанные по формуле (5). Таким образом ,при определении нормальных напряжений в случае поперечного изгиба теория чистого изгиба вполне применима.

Нейтральная линия. Вопрос о положении нейтральной линии.

При изгибе отсутствует продольная сила, поэтому можно записать 2015-04-18 22-27-18 Скриншот экранаПодставим сюда формулу нормальных напряжений (3) и получим2015-04-18 22-29-42 Скриншот экрана Так как модуль продольной упругости материала балки не равняется нулю и изогнутая ось балки имеет конечный радиус кривизны, остается положить, что 2015-04-18 22-31-54 Скриншот экрана этот интеграл представляет собой статический момент площади поперечного сечения балки относительно нейтральной линии-оси х 2015-04-18 22-34-11 Скриншот экрана, и, поскольку он равен нулю, то нейтральная линия проходит через центр тяжести сечения.

Условие 2015-04-18 22-37-31 Скриншот экрана (отсутствие момента внутренних сил относительно силовой линии) даст2015-04-18 22-39-10 Скриншот экрана или с учетом (3) 2015-04-18 22-40-08 Скриншот экрана. По тем же соображениям (см. выше) 2015-04-18 22-41-13 Скриншот экрана. В подынтегральном выражении — центробежный момент инерции сечения относительно осей х и у равен нулю, значит, эти оси являются главными и центральными и составляют прямой угол. Следовательно, силовая и нейтральная линии пр прямом изгибе взаимно перпендикулярны.

Установив положение нейтральной линии, несложно построить эпюру нормальных напряжений по высоте сечения. Ее линейный характер определяется уравнением первой степени.

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М Запись опубликована 18.04.2015 автором admin в рубрике Изгиб.

Источник