Меню

Полное напряжение цепи постоянного тока



РАСЧЕТ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

date image2015-04-01
views image17476

facebook icon vkontakte icon twitter icon odnoklasniki icon

Цепь постоянного тока

В цепи постоянного тока действуют постоянные напряжения, протекают постоянные токи и присутствуют только резистивные элементы (сопротивления).

Идеальным источником напряжения называют источник, напряжение на зажимах которого, создаваемое внутренней электродвижущей силой (ЭДС ), на зависит от формируемого им в нагрузке тока (рис. 6.1а). При этом имеет место равенство . Вольтамперная характеристика идеального источника напряжения показана на рис. 6.1б.

Идеальным источником тока называют источник, который отдает в нагрузку ток, не зависящий от напряжения на зажимах источника, Рис. 6.2а. Его вольтамперная характеристика показана на рис. 6.2б.

В сопротивлении связь между напряжением и током определяется законом Ома в виде

Пример электрической цепи показан на рис. 6.3. В ней выделяются ветви, состоящие из последовательного соединения нескольких элементов (источника E и сопротивления ) или одного элемента ( и ) и узлы – точки соединения трех и более ветвей, отмеченные жирными точками. В рассмотренном примере имеется ветви и узла.

Кроме того, в цепи выделяются независимые замкнутые контуры, не содержащие идеальные источники тока. Их число равно . В примере на рис. 6.3 их число , например, контуры с ветвями E и , показанные на рис. 6.3 овалами со стрелками, указывающими положительное направление обхода контура.

Связь токов и напряжений в цепи определяется законами Кирхгофа.

Первый закон Кирхгофа: алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю,

Втекающие в узел токи имеют знак плюс, а вытекающие минус.

Второй закон Кирхгофа: алгебраическая сумма напряжений на элементах замкнутого независимого контура равна алгебраической сумме ЭДС идеальных источников напряжения, включенных в этом контуре,

Напряжения и ЭДС берутся со знаком плюс, если их положительные направления совпадают с направлением обхода контура, в противном случае используется знак минус.

Для приведенного на рис. 6.3 примера по закону Ома получим подсистему компонентных уравнений

Читайте также:  Транзисторы от перепада напряжения

По законам Кирхгофа подсистема топологических уравнений цепи имеет вид

Расчет на основе закона Ома

Этот метод удобен для расчета сравнительно простых цепей с одним источником сигнала . Он предполагает вычисление сопротивлений участков цепи, для которых известна вели-

чина тока (или напряжения), с последующим определением неизвестного напряжения (или тока). Рассмотрим пример расчета цепи, схема которой приведена на рис. 6.4, при токе идеального источника А и сопротивлениях Ом, Ом, Ом. Необходимо определить токи ветвей и , а также напряжения на сопротивлениях , и .

Известен ток источника , тогда можно вычислить сопротивление цепи относительно зажимов источника тока (параллельного соединения сопротивления и последовательно соединен-

Рис. 6.4 ных сопротивлений и ),

Напряжение на источнике тока (на сопротивлении ) равно

Затем можно найти токи ветвей

Полученные результаты можно проверить с помощью первого закона Кирхгофа в виде . Подставляя вычисленные значения, получим А, что совпадает с величиной тока источника.

Зная токи ветвей, нетрудно найти напряжения на сопротивлениях (величина уже найдена)

По второму закону Кирхгофа . Складывая полученные результаты, убеждаемся в его выполнении.

Расчет цепи по уравнениям Кирхгофа

Проведем расчет токов и напряжений в цепи, показанной на рис. 6.3 при и . Цепь описывается системой уравнений (6.4) и (6.5), из которой для токов ветвей получим

Из первого уравнения выразим , а из третьего

Тогда из второго уравнения получим

Из уравнений закона Ома запишем

Нетрудно убедиться, что выполняется второй закон Кирхгофа

Подставляя численные значения, получим

Эти же результаты можно получить, используя только закон Ома.

Мощность в цепи постоянного тока

Действующие в цепи идеальные источники тока и (или) напряжения отдают мощность в подключенную к ним цепь (нагрузку). Для цепи на рис. 6.1а отдаваемая идеальным источником напряжения мощность равна

а в цепи на рис. 6.2а идеальный источник тока отдает в нагрузку мощность

Читайте также:  Как отсоединить регулятор напряжения

Подключенная к источнику внешняя резистивная цепь потребляет от него мощность, преобразуя ее в другте виды энергии, чаще всего в тепло.

Если через сопротивление протекает ток , а приложенное к нему напряжение равно , то для потребляемой сопротивлением мощности получим

С учетом уравнений закона Ома (6.1) можно записать

Если в цепи несколько сопротивлений, то сумма потребляемых ими мощностей равна суммарной мощности, отдаваемой в цепь всеми действующими в ней источниками. Это условие баланса мощностей.

Например, для цепи на рис. 6.3 в общем виде получим

Подставляя в левую часть равенства (6.11) полученные ранее выражения для токов, получим

что соответствует правой части выражения (6.11).

Аналогичные расчеты можно проделать и для цепи на рис. 6.4.

Условие баланса мощностей позволяет дополнительно контролировать правильность расчетов.

Источник

Полная цепь

Содержание

  1. Закон Ома для полной цепи
  2. Напряжение на внешней цепи
  3. КПД источника тока
  4. Короткое замыкание

Полная цепь содержит источник тока — элемент электрической цепи, который поддерживают энергию с заданными параметрами. При этом энергоснабжение цепи не зависит от характеристик элементов, входящих в её состав, в частности, сопротивления.

В полной цепи действует электродвижущая сила, или ЭДС — скалярная физическая величина, которая характеризует работу сторонних сил, действующих в электрических цепях постоянного и переменного тока.

Сторонние силы — это силы любой природы (кроме электрической), которые разделяют заряды внутри источника тока. Виды сторонний сил:

  • механические;
  • магнитные;
  • химические;
  • световые;
  • тепловые.

Принято считать, что сторонние силы переносят положительные заряды в направлении от «–» к «+».

Электродвижущая сила обозначается как ε . Единица измерения — Вольт (В). Численно ЭДС равна отношению работы сторонних сил по перемещению заряда к величине этого заряда:

Aст (Дж) — работа сторонних сил по перемещению заряда q (Кл).

Не следует путать напряжение и ЭДС. Напряжение характеризует работу электрического поля, а ЭДС — работу сторонних сил.

Читайте также:  Кпсэнг frls рабочее напряжение

Закон Ома для полной цепи

Сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи:

R (Ом) — полное сопротивление внешней цепи, r (Ом) — внутреннее сопротивление источника тока.

Пример №1. Рассчитайте силу тока в замкнутой цепи, состоящей из источника тока, у которого ЭДС равна 10 В, а внутреннее сопротивление равно 1 Ом. Сопротивление резистора равно 4 Ом.

Напряжение на внешней цепи

Напряжение на внешней цепи — это напряжение на клеммах источника, или падение напряжения на внешней цепи. Оно равно:

Выразим сопротивление через ЭДС:

Следовательно, напряжение на внешней цепи равно:

КПД источника тока

Не вся работа сторонних сил идет непосредственно на перемещение зарядов. Для выражения доли, которая идет именно на перемещение зарядов, вводится понятие КПД (коэффициента полезного действия).

КПД источника тока равен:

Пример №2. Напряжение на внешней цепи равно 6 В, ЭДС источника тока равно 12 В. Определить КПД источника тока.

Короткое замыкание

Рассмотрим простую электрическую цепь:

Она состоит из источника тока (1), ключа (2) и потребителя (3). Теперь поговорим о том, что же произойдет, если цепь замкнуть проводником так, как показано на рисунке ниже.

Соединив точки А и В напрямую, мы заставим течь ток, минуя потребитель тока, поскольку сопротивление проводника АВ много меньше сопротивления потребителя. А ток всегда течет по пути наименьшего сопротивления.

В результате соединения точек А и В сопротивление в электрической цепи резко упадет, что приведет к резкому скачку силы тока. Такое явление называется коротким замыканием.

Короткое замыкание — соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлением участка цепи.

Если полное сопротивление внешней цепи R стремится к нулю, то сила тока при коротком замыкании равна:

Источник