Меню

Параметрический стабилизатор как источник



Параметрические стабилизаторы

Параметрическим стабилизатором называется устройство, в котором выходное напряжение или ток поддерживается на уровне заданного значения за счет параметров радиоэлектронных элементов. В них используются нелинейные свойства характеристик (вольтамперных, ампервольтовых, ом-градусных, вебер-амперных, вольт-секундных и др.). В качестве примера таких приборов можно назвать такие электронные элементы, как стабилитроны, терморезисторы, дроссели насыщения и т.д.

Параметрические стабилизаторы могут стабилизировать постоянное или переменное напряжение, однако и в том и в другом случае они обладают достаточно плохими параметрами. В старой аппаратуре они применялись из-за простой, и, следовательно, дешевой схемы. В настоящее время практически вытеснены интегральными компенсационными стабилизаторами или источниками бесперебойного питания. Тем не менее, для того, чтобы понять, как работают компенсационные и импульсные стабилизаторы напряжения необходимо знать принципы работы параметрического стабилизатора.

В качестве примера параметрических стабилизаторов рассмотрим стабилизаторы напряжения. В них обычно используются полупроводниковые стабилитроны, которые работают в области электрического пробоя на обратном участке вольтамперной характеристики. Поэтому стабилитрон включается в обратном направлении. Выход из строя данного диода не происходит из-за того, что ток, протекающий через диод, ограничивается внешним резистором. Классическая схема параметрического стабилизатора напряжения на стабилитроне приведена на рисунке 1.

Рисунок 1. Cхема стабилизатора напряжения на стабилитроне

Особенности расчета параметрического стабилизатора мы обсудим в следующей статье, а сейчас подробнее рассмотрим параметры стабилитрона. Пример его вольтамперной характеристики приведен на рисунке 2

Рисунок 2. Вольтамперная характеристика стабилитрона

В параметрах стабилитрона приводится минимальный ток стабилизации, при котором начинается пробой и максимальный ток стабилизации, при котором еще не происходит разрушение pn-перехода за счет его теплового нагрева. Основными параметрами стабилитрона являются:

  • напряжение стабилизации Uст и пределы его изменения ΔUст;
  • номинальный ток Iном и пределы его изменения Iст min . Iст max;
  • максимальная допустимая мощность рассеивания Pдоп = Uст×Iст max;
  • дифференциальное сопротивление на рабочем участке rd;
  • температурный коэффициент напряжения (ТКН) αT.

Наиболее важным параметром стабилитрона является его напряжение стабилизации. Стабилитроны производят на напряжение от 3 до 400 В. Оно зависит от толщины p-n перехода. При этом в зависимости от толщины перехода пробой бывает лавинным или туннельным. Если требуется стабилизировать напряжение меньше трех вольт, то применяются стабисторы. У них для стабилизации используется прямая ветвь амплитудно-частотной характеристики. Поэтому схема параметрического стабилизатора напряжения меняется. Она приведена на рисунке 3.

Рисунок 3. Схема параметрического стабилизатора на стабисторе

Дифференциальное сопротивление стабилитрона обычно определяется омическим сопротивлением полупроводника. По вольтамперной характеристике его можно определить следующим образом:

Именно дифференциальное сопротивление стабилитрона определяет зависимость выходного напряжения параметрического стабилизатора от тока потребления нагрузки.

Не менее важным параметром является температурный коэффициент напряжения. Полупроводниковые диоды очень чувствительны к температуре и их вольтамперная характеристика смещается при нагреве. Пример изменения вольтамперной характеристики стабилитрона приведен на рисунке 4.

Читайте также:  Вечные стойки стабилизатора втулки вместо шарнира

Рисунок 4. Изменение вольтамперной характеристики под воздействием температуры

Для полупроводникового диода, который используется в качестве стабилизатора, ТКН αT = 0,1% на градус Цельсия. Для прецизионных стабилизаторов напряжения это слишком большая величина. В то же самое время, отрицательный или положительный будет ТКН зависит от типа пробоя. При напряжении стабилизации меньше 6,2 В он отрицательный, а при напряжении стабилизации больше этого значения — положительный. Поэтому прецизионные стабилитроны выполняются на это напряжение. При несколько большем напряжении можно воспользоваться прямой ветвью вольтамперной характеристики, где падение напряжения уменьшается с ростом температуры. Если стабилитроны включить встречно, как это показано на рисунке 5, то зависимость напряжения стабилизации от температуры можно значительно снизить (например, отечественный стабилитрон КС170).

Рисунок 5. Внутренняя схема прецизионного стабилитрона

Условно-графическое изображение прецизионного стабилитрона приведено на рисунке 6.

Рисунок 6. Условно-графическое изображение прецизионного стабилитрона

В схеме включения данного стабилитрона можно не опасаться неправильного включения, т.к. симметричные стабилитроны обладают одинаковым напряжением стабилизации.

Дата последнего обновления файла 07.06.2015

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Стабилитрон (wikipedia)
  6. Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне (http://www.radiohlam.ru/)
  7. КС147А стекло, Кремниевый стабилитрон малой мощности (chipdip.ru/)

Вместе со статьей «Параметрические стабилизаторы» читают:

Автор Микушин А. В. All rights reserved. 2001 . 2020

Предыдущие версии сайта:
http://neic.nsk.su/

Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре «Сигнал», Научно производственной фирме «Булат». В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи «Сигнал-201», авиационной системы передачи данных «Орлан-СТД», отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

Источник

Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне

Параметрический стабилизатор напряжения — это устройство, в котором стабилизация выходного напряжения достигается за счет сильной нелинейности вольт-амперной характеристики электронных компонентов, использованных для построения стабилизатора (т.е. за счет внутренних свойств электронных компонентов, без построения специальной системы регулирования напряжения).

Для построения параметрических стабилизаторов напряжения обычно используются стабилитроны, стабисторы и транзисторы.

Читайте также:  Как найти стабилизатор группы

Из-за низкого КПД такие стабилизаторы находят применение в основном в слаботочных схемах (с нагрузками до нескольких десятков миллиампер). Наиболее часто они используются как источники опорного напряжения (например, в схемах компенсационных стабилизаторов напряжения).

Параметрические стабилизаторы напряжения бывают однокаскадными, многокаскадными и мостовыми.

Рассмотрим простейший параметрический стабилизатор напряжения, построенный на основе стабилитрона (схема приведена ниже):

  1. Iст — ток через стабилитрон
  2. Iн — ток нагрузки
  3. Uвых=Uст — выходное стабилизированное напряжение
  4. Uвх — входное нестабилизированное напряжение
  5. R — балластный (ограничительный, гасящий) резистор

Работа стабилизатора основана на том свойстве стабилитрона, что на рабочем участке вольт-амперной характеристики (от Iст min до Iст max) напряжение на стабилитроне практически не изменяется (на самом деле конечно изменяется от Uст min до Uст max, но можно считать, что Uст min = Uст max = Uст).

В приведенной схеме, при изменении входного напряжения или тока нагрузки — напряжение на нагрузке практически не меняется (оно остаётся таким же, как и на стабилитроне), вместо этого изменяется ток через стабилитрон (в случае изменения входного напряжения и ток через балластный резистор тоже). То есть, излишки входного напряжения гасятся балластным резистором, величина падения напряжения на этом резисторе зависит от тока через него, а ток через него зависит в том числе от тока через стабилитрон, и таким образом, получается, что изменение тока через стабилитрон регулирует величину падения напряжения на балластном резисторе.

Уравнения, описывающие работу данной схемы:

Uвх=Uст+IR, учитывая, что I=Iст+Iн, получим

Для нормальной работы стабилизатора (чтобы напряжение на нагрузке всегда было в пределах от Uст min до Uст max) необходимо, чтобы ток через стабилитрон всегда был в пределах от Iст min до Iст max. Минимальный ток через стабилитрон будет течь при минимальном входном напряжении и максимальном токе нагрузки. Зная это, найдём сопротивление балластного резистора:

R=(Uвх min-Uст min)/(Iн max+Iст min) (2)

Максимальный ток через стабилитрон будет течь при минимальном токе нагрузки и максимальном входном напряжении. Учитывая это и сказанное выше относительно минимального тока через стабилитрон, с помощью уравнения (1) можно найти область нормальной работы стабилизатора:

Перегруппировав это выражение, получим:

Если считать, что минимальное и максимальное напряжение стабилизации (Uст min и Uст max) отличаются незначительно, то первое слагаемое в правой части можно считать равным нулю, тогда уравнение, описывающее область нормальной работы стабилизатора, примет следующий вид:

Из этой формулы сразу виден один из недостатков такого параметрического стабилизатора — мы не можем сильно менять ток нагрузки, поскольку это сужает диапазон входного напряжения схемы, более того, можно увидеть, что диапазон изменения тока нагрузки не может быть больше, чем диапазон изменения тока стабилизации стабилитрона (поскольку в этом случае правая часть уравнения вообще становится отрицательной)

Читайте также:  Стабилизаторы с разделительным трансформатором

Если ток нагрузки постоянен или изменяется незначительно, тогда формула для определения области нормальной работы становится совсем элементарной:

Далее, давайте рассчитаем КПД нашего параметрического стабилизатора. Он будет определяться отношением мощности, отдаваемой в нагрузку к входной мощности: КПД=Uст*Iн/Uвх*I. Если учесть, что I=Iн+Iст, то получим:

Из последней формулы видно, что чем больше разница между входным и выходным напряжением, а также чем больше ток через стабилитрон — тем хуже КПД.

Чтобы понять, что значит «хуже» и насколько вообще плохо обстоит дело с КПД у этого стабилизатора — давайте, используя формулы выше, попробуем прикинуть, что будет, если понижать напругу скажем с 6-10 Вольт до 5-ти. Возьмём самый обычный стабилитрон, скажем КС147А. Ток стабилизации у него может меняться в пределах от 3-х до 53-х мА. Чтобы при таких параметрах стабилитрона получить область нормальной работы шириной в 4 Вольта — нам нужно взять балластный резистор на 80 Ом (воспользуемся формулой 4, как будто ток нагрузки у нас постоянный, поскольку если это не так, то всё будет ещё хуже). Теперь из формулы 2 можно посчитать на какой именно ток нагрузки мы можем в этом случае рассчитывать. Получается всего 19,5 мА, а КПД в этом случае будет, в зависимости от входного напряжения, в пределах от 14% до 61%.

Если для этого же случая посчитать на какой максимальный выходной ток мы можем рассчитывать при условии, что выходной ток не постоянный, а может меняться от нуля до Imax, то решив совместно системы уравнений (2) и (3), получим R=110 Ом, Imax=13,5 мА. Как видите, максимальный выходной ток получился почти в 4 раза меньше максимального тока стабилитрона.

Более того, выходное напряжение, полученное на таком стабилизаторе, будет обладать значительной нестабильностью в зависимости от выходного тока (у КС147А на рабочем участке ВАХ напряжение меняется от 4,23 до 5,16В), что может оказаться неприемлемым. Единственный путь борьбы с нестабильностью в данном случае — взять более узкий рабочий участок ВАХ — такой, на котором напряжение меняется не от 4,23 до 5,16В, а скажем от 4,5 до 4,9В, но в этом случае и рабочий ток стабилитрона будет уже не 3..53мА, а скажем 17..40мА. Соответственно, и без того небольшая область нормальной работы стабилизатора станет ещё меньше.

Итак, единственный плюс такого стабилизатора — это его простота, тем не менее, как я уже говорил, такие стабилизаторы вполне себе существуют и даже находят активное применение в качестве источников опорного напряжения для более сложных схем.

Простейшая схема, позволяющая получить существенно больший выходной ток (или существенно более широкую область нормальной работы, или и то и другое) — параметрический стабилизатор на транзисторе.

Источник