Меню

Падение напряжение площадь кабеля



Площадь сечения проводов и кабелей в зависимости от силы тока, расчет необходимого сечения кабеля

Для ремонта старой проводки или прокладки новой нужно подобрать кабель нужного сечения, для того чтобы он выдерживал предполагаемую нагрузку.

Если старая проводка вышла из строя нужно её заменить, но прежде чем менять на аналогичную, узнайте, почему произошла проблема со старой. Возможно, что было просто механическое повреждение, или изоляция пришла в негодность, а еще более весомой проблемой является – выход из строя проводки из-за превышения допустимой нагрузки.

Содержание статьи

Площадь сечения проводов и кабелей в зависимости от силы тока, расчет необходимого сечения кабеля

Чем отличается кабельная продукция, какие основные характеристики?

Начнем с того, что определяется, какое напряжение в сети, в которой будут работать кабеля. Для бытовых сетей часто применяются кабеля и провода типа ВВГ, ПУГНП (только он запрещен современными требованиями ПУЭ из-за больших допусков по сечению при производстве, до 30%, и допустимой толщине изолирующего слоя 0.3мм, против 0.4 в ПУЭ), ШВВП и другие.

Если отойти от определений провод от кабеля отличается минимально, в основном по определению в ГОСТе или ТУ по которому он производится. Ведь на рынке есть большое количество проводов с 2-3 жилами и двумя слоями изоляции, например тот же ПУГНП или ПУНП.

Допустимое напряжение определяется изоляцией кабеля

Для выбора кабеля кроме напряжения принимают во внимание и условия, в которых он будет работать, для подключения движущегося инструмента и оборудования он должен быть гибким, для подключения неподвижных элементов, в принципе, все равно, но лучше предпочесть кабель с монолитной жилой.

Решающим фактором при покупке является площадь поперечного сечения жилы, она измеряется в мм2, от неё и зависит способность проводника выдерживать длительную нагрузку.

Что влияет на допустимый ток через кабель?

Для начала обратимся к основам физики. Есть такой закон Джоуля-Ленца, он был открыт независимо друг от друга двумя ученными Джеймсом Джоулем (в 1841) и Эмилием Ленцом (в 1842), поэтому и получил двойное название. Так вот этот закон количественно описывает тепловое действие электрического тока протекающего через проводник.

Если выразить его через плотность тока получится такая формула:

Тепловое воздействие электрического тока протекающего через проводник

Расшифровка: w – мощность выделения тепла в единице объема, вектор j – плотность тока через проводник измеряется в Амперах на мм2. Для медного провода принимают от 6 до 10 А на миллиметр площади, где 6 – рабочая плотность, а 10 кратковременная. вектор E – напряженность электрического поля. σ – проводимость среды.

Так как проводимость обратно пропорциональна сопротивлению: σ=1/R

Если выразить закон Джоуля-Ленца через количество теплоты в интегральной форме, то:

Закон Джоуля-Ленца в интегральной форме

Закон Джоуля-Ленца

Таким образом, dQ – количество теплоты, которое выделится за промежуток времени dt в цепи, где протекает ток I, через проводник сопротивлением R.

То есть количество тепла прямо пропорционально току и сопротивлению. Чем больше ток и сопротивление – тем больше выделяется тепла. Это опасно тем, что в определенный момент количество тепла достигнет такого значения, что у проводов плавится изоляция. Вы могли замечать, что провода дешевых кипятильников ощутимо теплеют во время работы, это оно и есть.

Если выделяется мощность на кабеле, значит, падает и напряжение на его концах, подключенных к нагрузке.

В калькуляторах для расчета сечений кабеля, обычно задаются такие параметры:

ток или мощность нагрузки;

допустимое падение напряжения (обычно в процентах);

Чем больше сопротивление – тем больше упадет напряжение и нагреется кабель, поскольку на нем выделится мощность (P=UI, где U падение напряжения на кабеле, I – ток, протекающий через него).

Все расчеты свелись к току и сопротивлению. Сопротивление проводника вычисляется по формуле:

Сопротивление проводника

Здесь: ρ (ро) – удельное сопротивление, l – длина кабеля, S – площадь поперечного сечения.

Удельное сопротивление зависит от структуры металла, величины удельных сопротивлений можно определить из таблицы.

Удельное сопротивление зависит от структуры металла, величины удельных сопротивлений

В проводке в основном используются алюминий и медь. У меди сопротивление 1.68*10-8 Ом*мм2/м., а у аллюминия в 1.8 раза больше чем у меди, равняется 2.82*10-8 Ом*мм2/м. Это значит, что алюминиевый провод нагреется почти в 2 раза сильнее, чем медный при одинаковом сечении и токе. Отсюда следует, что для прокладки проводки придется покупать более толстый алюминиевый провод, к тому же жилы легко повредить.

Поэтому медные провода вытеснили с домашней проводки медные, а применение аллюминия в проводке запрещено, разрешается только применение алюминиевых кабелей для монтажа очень мощных электроустановок, потребляющих большой ток, тогда используют провод из аллюминия сечением больше 16 мм2 (смотрите — Почему алюминиевый кабель нельзя использовать в электропроводке)

Как определить сопротивление провода по диаметру жилы?

Бывают случаи, когда площадь поперечного сечения жилы не известна, поэтому можно посчитать по диаметру. Для определения диаметра монолитной жилы можно использовать штангенциркуль, если его нет, то возьмите стержень, например шариковую ручку или гвоздь, намотайте плотно 10 витков провода на него, и измерьте линейкой длину получившейся спирали, разделив эту длину на 10 – вы получите диаметр жилы.

Определение сопротивления провода по диаметру жилы

Для определения общего диаметра многопроволочной жилы, измерьте диаметр каждой жилы и умножьте на их количество.

Многожильный провод

Дальше считают поперечное сечение по этой формуле:

Поперечное сечение

И вновь возвращаются к этой формуле для расчета сопротивления провода:

Формула для расчета сопротивления провода

Как определить необходимую площадь сечения провода?

Самый простой вариант – определить площадь сечения жил по таблице. Он подходит для расчета не слишком длинных линий проложенных в нормальных условиях (с нормальной температурой окружающей среды). Также так можно подобрать провод для удлинителя. Обратите внимание, что в таблице указаны сечения при определенном токе и мощности в однофазной и трёхфазной сети для аллюминия и меди.

Площадь сечения проводов и кабелей в зависимости от силы тока

При расчете длинных линий (больше 10 метров) такой таблицей лучше не пользоваться. Нужно провести расчеты. Быстрее всего воспользоваться калькулятором. Алгоритм расчета такой:

Берут допустимые потери по напряжению (не более 5%), это значит что при напряжении в сети 220В и допустимым потерям напряжения в 5% на кабеле падение напряжения (от конца до конца) не должно превышать:

Теперь, зная ток, который будет протекать, мы может вычислить сопротивление кабеля. В двух проводной линии сопротивление умножают на 2, так как ток течет по двум проводам, при линии длиной в 10м, общая длина проводников – 20м.

Читайте также:  Принцип усиления по напряжению транзистора

Отсюда по вышеприведенным формулам вычисляют необходимое поперечное сечение кабеля.

Вы можете сделать это автоматически со своего смартфона, с помощью приложений «Мобильный электрик» и electroDroid. Только в калькуляторе задается не общая длина проводов, а именно длина линии от источника питания к приемнику электричества.

Подборка статей о том, как правильно выбрать кабель ддля квартиры или дома:

Заключение

Правильно рассчитанная проводка это уже 50% залог её успешного функционирования, вторая половина зависит от правильности монтажа. Следует учитывать все особенности проводки, максимальную потребляемую мощность всеми потребителями. При этом введите запас по допустимому току на 20-40% «на всякий случай».

Источник

Влияние длины и сечения кабеля на потери по напряжению

Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:

из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.

При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.

Почему падает напряжение и как это зависит от длины и сечения проводников

Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.

Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:

  • удельного сопротивления материала – ρ;
  • длины отрезка проводника – l;
  • площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.

Все четыре параметра связывает следующее соотношение:

очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.

Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).

Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.

Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.

Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.

Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.

Смотрите также другие статьи :

К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Источник

Последствия при падении напряжения по длине кабеля и расчет потерь

Линии электропередач транспортируют ток от распределительного устройства к конечному потребителю по токоведущим жилам различной протяженности. В точке входа и выхода напряжение будет неодинаковым из-за потерь, возникающих в результате большой длины проводника.

Падение напряжения по длине кабеля возникает по причине прохождения высокого тока, вызывающего увеличение сопротивления проводника.

На линиях значительной протяженности потери будут выше, чем при прохождении тока по коротким проводникам такого же сечения. Чтобы обеспечить подачу на конечный объект тока требуемого напряжения, нужно рассчитывать монтаж линий с учетом потерь в токоведущем кабеле, отталкиваясь от длины проводника.

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.
Читайте также:  Номинальное напряжение обмотки среднего напряжения

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

Расчет с применением формулы

На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.

Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.

Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:

  • Удельное сопротивление провода — p.
  • Длина токопроводящего кабеля — l.
  • Площадь сечения проводника — S.
  • Сила тока нагрузки в амперах — I.
  • Сопротивление проводника — R.
  • Напряжение в электрической цепи — U.

Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.

Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:

Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.

Такие потери в 14,93 В — это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы — работать с меньшим накалом.

Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность.

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q — активная, реактивная мощность.
  • r0, x0 — активное, реактивное сопротивление.
  • U ном — номинальное напряжение.

Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы — между фазами и нейтральной линией.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Читайте также:  Ацп для преобразования напряжения

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

Использование готовых таблиц

Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.

В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.

Таблица 1. Определение потерь напряжения по длине кабеля

Площадь сечения, мм2 Линия с одной фазой Линия с тремя фазами
Питание Освещение Питание Освещение
Режим Пуск Режим Пуск
Медь Алюминий Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1 Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1
1,5 24,0 10,6 30,0 20,0 9,4 25,0
2,5 14,4 6,4 18,0 12,0 5,7 15,0
4,0 9,1 4,1 11,2 8,0 3,6 9,5
6,0 10,0 6,1 2,9 7,5 5,3 2,5 6,2
10,0 16,0 3,7 1,7 4,5 3,2 1,5 3,6
16,0 25,0 2,36 1,15 2,8 2,05 1,0 2,4
25,0 35,0 1,5 0,75 1,8 1,3 0,65 1,5
35,0 50,0 1,15 0,6 1,29 1,0 0,52 1,1
50,0 70,0 0,86 0,47 0,95 0,75 0,41 0,77

Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.

Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:

∆U = 1 В*0,05 км*100А = 5 В

Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.

На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда

∆U при запуске = 0,52*0,05*500 = 13 В

∆U щита = 10*1400/100 = 14 В

∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.

Применение сервис-калькулятора

Расчеты, таблицы, графики, диаграммы — точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.

Как это работает:

  1. Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
  2. В калькулятор нужно ввести следующие величины — ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
  3. Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
  4. После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
  5. Недостоверный результат можно получить при ошибочном введении исходных величин.

Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.

Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.

Как сократить потери

Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.

Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:

  1. Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
  2. Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
  3. Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.

Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.

Расчет потерь напряжения — одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.

Источник