Меню

Основные свойства автоматических регуляторов



Характеристики автоматических регуляторов

Закон Дифференциальное уравнение Передаточная функция Передаточная характеристика АФЧХ Параметры настройки
П
И
ПД ,
ПИ ,
ПИД , ,

Пропорциональный (П) регулятор. Он перемещает РО на значение x пропорциональное отклонению регулируемой величины у or заданною значения.

Дифференциальное уравнение регулятора (p означает запись в операторной форме)

Таким образом в динамическом отношении П-регулятор подобен безынерционному (пропорциональному) звену.

Параметр настройки П-регулятора — коэффициент пропорциональности , равный перемещению РО x при отклонении регулируемой величины у на единицу ее изменения.

При выборе структурной схемы любого реального регулятора, в том числе и пропорционального, решающее значение имеет передаточная функция (ПФ) исполнительного механизма, которая может соответствовать ПФ интегрирующего или пропорционального звена. К первой группе относятся электродвигательные ИМ, обеспечивающие постоянную скорость перемещения РО, ко второй — пневматические мембранные ИМ, у которых перемещение РО пропорционально регулирующему воздействию.

Структурная схема П-регулятора с ИМ первого типа приведена на рисунке 4.2, а. Закон регулирования формируется с помощью отрицательной обратной связи (ОС) по положению РО, т. е. на вход устройства ОС поступает сигнал x с преобразователя перемещения ИМ.

В соответствии с правилами преобразования структурных схем ПФ регулятора имеет вид

При большом коэффициенте усиления ПФ упрощается

Для того чтобы формула (4.1) была тождественна ПФ идеального П-регулятора , необходимо выполнить условие .

Таким образом, ОС должна быть выполнена в виде безынерционного звена с коэффициентом усиления . Такую ОС называют жесткой. Соответственно, параметр настройки П-регулятора — коэффициент пропорциональности задается параметрами звена ОС.

Переходная характеристика реального П-регулятора несколько отличается от характеристики идеального в начальной своей части из-за ограниченной скорости ИМ.

Рис. 4.2. Структурные схемы П-регулятора (а) и И-регулятора (б):

1 — усилитель; 2 — исполнительный механизм; 3 — цепь обратной связи

Пропорциональные регуляторы позволяют устойчиво работать практически в любых технологических системах. Однако их недостаток — зависимость регулируемой величины от нагрузки объектов.

Интегральный (И) регулятор. Он перемешает РО пропорционально интегралу от сигнала рассогласования,

Уравнение регулятора (в операторной форме)

Таким образом, в динамическом отношении И-регулятор подобен интегрирующему звену. Параметр настройки И-регулятора — коэффициент пропорциональности — характеризует зависимость скорости перемещения регулирующего органа от значения отклонения регулируемого параметра.

Структурная схема серийного П-регулятора показана на рисунке 4.2, б. Передаточные функции элементов схемы определяются следующими выражениями

После подстановки в формулу (4.3) значений ПФ из формулы (4.2). деления числителя и знаменателя на и отбрасывания за малостью получаем ПФ И-регулятора ( — постоянная времени ИМ, величина, обратная )

И-регуляторы поддерживают параметр без его отклонений, однако могут устойчиво работать только на объектах, имеющих значительное самовыравнивание.

Пропорционально-дифференциальный (ПЛ) регулятор. Он перемещает РО на значение пропорциональное сумме отклонения и скорости (дифференциала) отклонения регулируемой величины .

Уравнение регулятора (в операторной форме)

Таким образом, в динамическом отношении ПД-регулятор подобен системе из двух параллельно включенных звеньев: безынерционного с коэффициентом пропорциональности и дифференциального с коэффициентом .

Пропорционально-интегральный (ПИ) регулятор.Он перемещает РО на величину , пропорциональную сумме отклонения и интеграла от отклонения регулируемой величины у.

Уравнение регулятора (в операторной форме)

Таким образом, в динамическом отношении ПИ-регулятор подобен системе из двух параллельно включенных регуляторов: пропорционального с коэффициентом пропорциональности и интегрального с коэффициентом пропорциональности Отсюда следует, что у ПИ-регулятора два параметра настройки: коэффициент пропорциональности и время удвоения . При этом , как следует из таблицы 2, может быть определено как время, за которое выходной сигнал регулятора изменяется от до т. е. удваивается.

Структурная схема ПИ-регулятора показана на рисунке 4.3 в двух вариантах: с охватом и без охвата ИМ отрицательной ОС.

В первом варианте (рис. 4.3, а) устройство ОС должно иметь характеристику реального дифференцирующего звена

где и — коэффициент усиления и постоянная времени дифференцирующего звена.

Тогда, как было отмечено ранее, при достаточно большом коэффициенте усиления ПФ регулятора

если принять и .

Таким образом, в первом варианте исполнения регулятора ПФ исполнительного механизма не влияет на формирование закона регулирования, который полностью определяется характеристикой устройства ОС. В серийных ПИ-регуляторах этою типа в качестве ОС используют различные электрические, пневматические или гидравлические устройства — аналоги реально дифференцирующего звена. Такую ОС называют упругой или гибкой.

Во втором варианте исполнения ПИ-рсгулятора (рис. 4.3, б)

Рис. 4.3. Структурные схемы ПИ-регулятора с охватом (а) и без охвата (о) ИМ цепью отрицательной обратной связи:

1 — усилитель; 2 — исполнительный механизм; 3 — обратная связь

возможны два случая, когда исполнительный механизм имеет характеристику интегрирующего или пропорционального звена.

В обоих случаях при достаточно большом коэффициенте усиления имеем

Если, , а ОС выполнена в виде апериодического звена 1-го порядка , то получаем ПФ ПИ-регулятора

где оба параметра настройки и также определяются параметрами узла ОС.

Если у ИМ характеристика пропорционального звена, то для реализации ПИ-регулятором закона регулирования звено ОС должно иметь характеристику реального дифференцирующего звена.

При увеличении постоянной времени такой ПИ-регулятор превращается в П-регулятор, а устройство ОС — в безынерционное звено.

В большинстве серийно выпускаемых электрических регуляторов, использующих ИМ с постоянной скоростью перемещения и имеющих структурную схему (рис. 4.3, б), в качестве второй ступени усиления используют трехпозиционный релейный элемент.

Такой принцип реализован в большом числе регуляторов, используемых в сельскохозяйственном производстве (Р-25, РС-29, РП-4 и др.).

Читайте также:  Регуляторы схем для паяльника

ПИ-регуляторы, отличаясь простотой конструкции, обеспечивают высокое качество стабилизации параметра независимо от нагрузки объекта.

Пропорционально-интегрально-дифференциальный (ПИД) регулятор.Он перемещает РО пропорционально отклонению, интегралу и скорости отклонения регулируемой величины.

Уравнение регулятора (в операторной форме)

Таким образом, в динамическом отношении ПИД-регулятор подобен системе из трех параллельно включенных звеньев: пропорционального — с коэффициентом пропорциональности интегрального — с и дифференцирующего — .

Соответственно, у ПИД-регулятора параметров настройки три: коэффициент пропорциональности , время интегрирования , и время дифференцирования .

На практике аналоговый ПИД-регулятор выполняют по той же структурной схеме, что и ПИ-регулятор (рис. 4.3, а), но устройство ОС в этом случае должно иметь ПФ вида апериодического звена второго порядка. Обычно ПИД-закон регулирования реализуют путем включения последовательного корректирующего устройства в виде интегрально-дифференцирующего звена.

Позиционный (релейный) регулятор.Он вырабатывает сигнал, который перемещает РО в одно из фиксированных положений (позиций). Этих положений может быть два, три и более, соответственно различают двух-, трех- и многопозицонные регуляторы.

Уравнение автоматической системы регулирования с позиционным регулятором определяется статической характеристикой регулятора.

Статическая характеристика наиболее распространенного из этой группы регуляторов — двухпозиционного показана на рисунке 4.4, а.

Величина определяет зону неоднозначности регулятора. При изменении входной величины у (она же — выходная величина объекта) относительно заданного значения на а выходная величина (регулирующее воздействие) скачком достигнет своего максимального значения . При уменьшении на то же значение а выходная величина также скачком достигнет значения , причем в общем случае .

Таким образом, двухпозиционные регуляторы имеют два параметра настройки: зона неоднозначности и регулирующее воздействие В.

Характерная особенность системы регулирования с двухпозиционным регулятором — автоколебательный характер изменения регулируемой величины . Параметры автоколебаний — амплитуда и период зависят от свойств объекта регулирования ( , , ) и параметров настройки регулятора.

Рис. 4.4. Статические характеристики позиционных регуляторов (а. в)

Трехпозиционные регуляторы (рис. 4.4, б) в отличие от двухпозиционных кроме двух устойчивых положений — «больше» и «меньше» — обеспечивают еще и третье — «норма». Органы настройки трехпозиционного регулятора позволяют устанавливать зону нечувствительности и значение регулирующего воздействия .

Преимущества трехпозиционного регулирования перед двухпозиционным заключаются в отсутствии автоколебаний при изменении и малом значении амплитуды колебаний регулируемой величины.

Позиционные регуляторы могут работать также и с ИМ, обеспечивающими постоянную скорость перемещения РО. Статическая характеристика такого регулятора приведена на рисунке 4.4, в. В соответствии с этой характеристикой скорость перемещения РО изменяется скачкообразно, достигая значения где — время полного хода ИМ.

Релейные регуляторы кроме зоны нечувствительности имеют также и зону неоднозначности.

Системы автоматического регулирования с позиционными регуляторами применяют при автоматизации ТП сельскохозяйственного производства. Это стало возможным благодаря таким их преимуществам, как простота технических способов управления энергетическими потоками, удобство сочетания релейного элемента с ИМ постоянной скорости, перемещающим РО, а также благодаря дешевизне, надежности и простоте настройки самих регулирующих устройств.

Дата добавления: 2015-07-14 ; просмотров: 4196 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Строй-справка.ру

Отопление, водоснабжение, канализация

Навигация:
Главная → Все категории → Производство железобетонных изделий

Характеристики автоматических регуляторов
Характеристики автоматических регуляторов

Автоматические регуляторы классифицируют по ряду признаков.

По способу действия регуляторы подразделяют на регуляторы прямого и непрямого действия.

Регуляторы прямого действия наиболее просты по устройству. Они приводятся в действие усилием, развиваемым измерительной системой регулятора при изменении величины регулируемого. параметра. Эти регуляторы для своей работы не используют посторонней энергии. В большинстве случаев регулирующий орган приводится в действие системой рычагов (механической передачей) и давлением жидкости или газа, заключенного в системе самого прибора.

Регуляторы непрямого действия для своей работы используют источник энергии — электрической, пневматической или гидравлической. Усилие, возникающее в измерительном элементе, при изменении величины регулируемого параметра включает в работу вспомогательное устройство — управляющий элемент. Это устройство открывает доступ энергии (электрической, пневматической или гидравлической) от постороннего источника в исполнительный механизм, развивающий усилие для перестановки регулирующего органа.

Чувствительность регуляторов непрямого действия выше, чем у регуляторов прямого действия.

Автоматические регуляторы различают также по характеристике их действия, т. е. зависимостью между изменением регулируемого параметра и перемещением регулирующего органа.

Рис. 1. Условные изображения автоматических регуляторов в функциональных схемах и их классификация

Позиционными регуляторами называют такие, у которых регулирующий орган может занимать два или три определенных положения. У двухпозиционных регуляторов регулирующий орган может занимать только два положения: полностью открытое или полностью закрытое. Перестановка регулирующего органа с одного положения на другое происходит почти мгновенно.

Двухпозиционные регуляторы применяют лишь на объектах с большим коэффициентом емкости и незначительным запаздыванием.

У трехпозиционных регуляторов регулирующий орган может занимать три положения: полностью открытое, среднее (нормальное) и полностью закрытое.

Статическими (пропорциональными) называют такие регуляторы, у которых величина перемещения регулирующего органа пропорциональна отклонению регулирующего параметра. Это означает, что каждому значению регулируемого параметра соответствует определенное положение регулирующего органа.

Величину перемещения регулирующего органа при отклонении регулируемого параметра, на 1% можно установить заранее. Для этого пропорциональные регуляторы снабжают устройством, называемым механизмом пропорциональности. С помощью механизма можно установить соответствующий предел пропорциональности — участок шкалы регулятора в процентах от всей шкалы, причем изменение регулируемого параметра вызывают перемещение регулирующего органа из одного крайнего положения в другое.

Чем больше зона регулирования, тем на меньшую величину перемещается регулирующий орган при одном и том же изменении параметра.

Читайте также:  Неисправности регуляторов давления типа рд

При регулировании объектов с большим коэффициентом емкости и без запаздывания пользуются малым пределом пропорциональности. По мере уменьшения коэффициента емкости и возрастания запаздывания объекта предел пропорциональности увеличивают.

Астатическими (интегральными) регулятор а-м и называют такие, у которых при отклонении регулируемого параметра от заданного значения регулирующий орган перемещается в одном направлении до тех пор, пока регулирующий параметр снова не примет заданного значения. Направление действия регулирующего органа изменяется только тогда, когда параметр при изменении перейдет через заданное значение.

Изодромные (пропорционально-интегральные) регуляторы обладают свойствами статических и астатических регуляторов. У изодромного регулятора регулирующий орган сначала принимает положение, зависящее от величины отклонения регулируемого параметра, т. е. действует как статический регулятор. Затем он совершает дополнительное перемещение, необходимое для ликвидации возникшего отклонения от заданного значения, т. е. действует как астатический регулятор.

Изодромные регуляторы применяют при быстро и резко меняющихся нагрузках, а также на объектах с малым коэффициентом емкости и при наличии передаточного запаздывания.

Изодромные регуляторы с предварением (пропорциональные и интегрально-дифференциальные регуляторы). На тех регулируемых объектах, у которых часто и резко меняется нагрузка и велико запаздывание, используют изодромные регуляторы. В результате такой конструкции дополнительно вводят воздействие по производственной регулируемой величине. В результате получается пропорциональный интегрально-дифференциальный регулятор или сокращенно ПИД-регулятор.

Действие такого прибора можно рассматривать как совместное действие статического Ст и астатического Ас регуляторов с дополнительным воздействием по скорости изменения регулируемой величины.

По назначению различают регуляторы расхода, давления, температуры, уровня и т. д.

По характеру изменения скорости регулирующего воздействия различают регуляторы с постоянной и переменной скоростью перемещения регулирующего органа.

Навигация:
Главная → Все категории → Производство железобетонных изделий

Источник

Автоматическое регулирование технологических процессов

Автоматическое регулирование — это управление технологическими процессами при помощи продвинутых устройств с заранее определенными алгоритмами.

В быту, например, автоматическое регулирование может осуществляться при помощи термостата, который измеряет и поддерживает комнатную температуру на заданном уровне.

Автоматическое регулированиеАвтоматическое регулирование

После того, как желательная температура задана, термостат автоматически контролирует комнатную температуру и включает или отключает нагреватель или воздушный кондиционер по мере необходимости, чтобы поддержать заданную температуру.

На производстве управление процессами обычно осуществляется средствами КИП и А, которые измеряют и поддерживают на необходимом уровне технологические параметры процесса, такие как: температура, давление, уровень и расход. Ручное регулирование на более-менее масштабном производстве затруднительно по ряду причин, а многие процессы вообще невозможно регулировать вручную.

Технологические процессы и переменные процесса

Для нормального выполнения технологических процессов необходимо контролировать физические условия их протекания. Такие физические параметры, как температура, давление, уровень и расход могут изменяться по многим причинам, и их изменения влияют на технологический процесс. Эти изменяемые физические условия называются «переменными процесса».

Некоторые из них могут понизить эффективность производства и увеличить производственные затраты. Задачей системы автоматического регулирования является минимизация производственных потерь и затрат на регулирование, связанных с произвольным изменением переменных процесса.

На любом производстве осуществляется воздействие на сырьё и другие исходные компоненты для получения целевого продукта. Эффективность и экономичность работы любого производства зависит от того, как технологические процессы и переменные процесса управляются посредством специальных систем регулирования.

На тепловой электростанции, работающей на угле, уголь размалывается и затем сжигается, чтобы произвести тепло, необходимое для преобразования воды в пар. Пар может использоваться по множеству назначений: для работы паровых турбин, тепловой обработки или сушки сырых материалов. Ряд операций, которые эти материалы и вещества проходят, называется «технологическим процессом». Слово «процесс» также часто используется по отношению к индивидуальным операциям. Например, операция по размолу угля или превращения воды в пар могла бы называться процессом.

Принцип работы и элементы системы автоматического регулирования

В случае системы автоматического регулирования наблюдение и регулирование производится автоматически при помощи заранее настроенных приборов. Аппаратура способна выполнять все действия быстрее и точнее, чем в случае ручного регулирования.

Действие системы может быть разделено на две части: система определяет изменение значения переменной процесса и затем производит корректирующее воздействие, вынуждающее переменную процесса вернуться к заданному значению.

Система автоматического регулирования содержит четыре основных элемента: первичный элемент, измерительный элемент, регулирующий элемент и конечный элемент.

Элементы системы автоматического регулированияЭлементы системы автоматического регулирования

Первичный элемент воспринимает величину переменной процесса и превращает его в физическую величину, которое передается в измерительный элемент. Измерительный элемент преобразовывает физическое изменение, произведенное первичным элементом, в сигнал, представляющий величину переменной процесса.

Выходной сигнал от измерительного элемента посылается к регулирующему элементу. Регулирующий элемент сравнивает сигнал от измерительного элемента с опорным сигналом, который представляет собой заданное значение и вычисляет разницу между этими двумя сигналами. Затем регулирующий элемент производит корректирующий сигнал, который представляет собой разницу между действительной величиной переменной процесса и ее заданным значением.

Выходной сигнал от регулирующего элемента посылается к конечному элементу регулирования. Конечный элемент регулирования преобразовывает получаемый им сигнал в корректирующее воздействие, которое вынуждает переменную процесса возвратиться к заданному значению.

В дополнение к четырем основным элементам, системы регулирования процессами могут иметь вспомогательное оборудование, которое обеспечивает информацией о величине переменной процесса. Это оборудование может включать такие приборы как самописцы, измерители и устройства сигнализации.

Читайте также:  Регулятор давления мтлб ар11 3512010

Схема простой системы автоматического регулированияСхема простой системы автоматического регулирования

Виды систем автоматического регулирования

Имеются два основных вида автоматических систем регулирования: замкнутые и разомкнутые, которые различаются по своим характеристикам и следовательно — по уместности применения.

Замкнутая система автоматического регулирования

В замкнутой системе информация о значении регулируемой переменной процесса проходит через всю цепочку приборов и устройств, предназначенных для контроля и регулирования этой переменной. Таким образом, в замкнутой системе производится постоянное измерение регулируемой величины, её сравнение с задающей величиной и оказывается соответствующее воздействие на процесс для приведения регулируемой величины в соответствие с задающей величиной.

Схема замкнутой системы автоматического регулированияСхема замкнутой системы автоматического регулирования

Например, подобная система хорошо подходит для контроля и поддержания необходимого уровня жидкости в резервуаре. Буек воспринимает изменение уровня жидкости. Измерительный преобразователь преобразует изменения уровня в сигнал, который отправляет на регулятор. Который, в свою очередь, сравнивает полученный сигнал с необходимым уровнем, заданным заранее. После регулятор вырабатывает корректирующий сигнал и отправляет его на регулирующий клапан, который корректирует поток воды.

Разомкнутая система автоматического регулирования

В разомкнутой системе нет замкнутой цепочки измерительных и обрабатывающих сигнал приборов и устройств от выхода до входа процесса, и воздействие регулятора на процесс не зависит от результирующего значения регулируемой переменной. Здесь не производится сравнение между текущим и желаемым значением переменной процесса и не вырабатывается корректирующее воздействие.

Схема разомкнутой системы автоматического регулированияСхема разомкнутой системы автоматического регулирования

Один из примеров разомкнутой системы регулирования — автоматическая мойка автомобилей. Это технологический процесс по мойке автомобилей и все необходимые операции чётко определены. Когда автомобиль выходит с мойки предполагается, что он должен быть чистым. Если автомобиль недостаточно чист, то система этого не обнаруживает. Здесь нет никакого элемента, который бы давал информацию об этом и корректировал процесс.

На производстве некоторые разомкнутые системы используют таймеры, чтобы гарантировать, что ряд последовательных операций выполнен. Этот вид разомкнутого регулирования может быть приемлем, если процесс не очень ответственный. Однако, если процесс требует, чтобы выполнение некоторых условий было проверено и при необходимости были бы сделаны корректировки, разомкнутая система не приемлема. В таких ситуациях необходимо применить замкнутую систему.

Методы автоматического регулирования

Системы автоматического регулирования могут создаваться на основе двух основных методов регулирования: регулирования с обратной связью, которое работает путем исправления отклонений переменной процесса после того, как они произошли; и с воздействием по возмущению, которое предотвращает возникновение отклонений переменной процесса.

Регулирование с обратной связью

Регулирование с обратной связью — это такой способ автоматического регулирования, когда измеренное значение переменной процесса сравнивается с ее уставкой срабатывания и предпринимаются действия для исправления любого отклонения переменной от заданного значения.

Система ручного регулирования с обратной связью

Основным недостатком системы регулирования с обратной связью является то, что она не начинает регулировки процесса до тех пор, пока не произойдет отклонение регулируемой переменной процесса от значения ее уставки.

Температура должна измениться, прежде чем регулирующая система начнет открывать или закрывать управляющий клапан на линии пара. В большинстве систем регулирования такой тип регулирующего действия приемлем и заложен в конструкцию системы.

В некоторых промышленных процессах, таких как изготовление лекарственных препаратов, нельзя допустить отклонение переменной процесса от значения уставки. Любое отклонение может привести к потере продукта. В этом случае необходима система регулирования, которая бы предвосхищала изменения процесса. Такой упреждающий тип регулирования обеспечивается системой регулирования с воздействием по возмущению.

Регулирование с воздействием по возмущению

Регулирование по возмущению — это регулирование с опережением, потому что прогнозируется ожидаемое изменение в регулируемой переменной и принимаются меры прежде, чем это изменение происходит.

Это фундаментальное различие между регулированием с воздействием по возмущению и регулированием с обратной связью. Контур регулирования с воздействием по возмущению пытается нейтрализовать возмущение прежде, чем оно изменит регулируемую переменную, в то время, как контур регулирования с обратной связью пытается отрабатывать возмущение после того, как оно воздействует на регулируемую переменную.

Система регулирования с воздействием по возмущению

Система регулирования с воздействием по возмущению имеет очевидное преимущество перед системой регулирования с обратной связью. При регулировании по возмущению в идеальном случае величина регулируемой переменной не изменяется, она остается на значении ее уставки. Но ручное регулирование по возмущению требует более сложного понимания того влияния, которое возмущение окажет на регулируемую переменную, а также использования более сложных и точных приборов.

На заводе редко можно встретить чистую систему регулирования по возмущению. Когда используется система регулирования по возмущению, она обычно сочетается с системой регулирования с обратной связью. И даже в этом случае регулирование по возмущению предназначается только для более ответственных операций, которые требуют очень точного регулирования.

Одноконтурные и многоконтурные системы регулирования

Одноконтурная система регулирования или простой контур регулирования — это система регулирования с одним контуром, который обычно содержит только один первичный чувствительный элемент и обеспечивает обработку только одного входного сигнала на регулятор.

Одноконтурная система регулирования

Некоторые системы регулирования имеют два или больше первичных элемента и обрабатывают больше, чем один входной сигнал на регулятор. Эти системы автоматического регулирования называются «многоконтурными» системами регулирования.

Источник