Меню

Основными гуморальным регулятором дыхания является



Основными гуморальным регулятором дыхания является

Обычно человек не замечает, как он дышит, потому что процесс этот регулируется независимо от его воли. В какой-то мере, однако, дыхание можно регулировать сознательно, о чем мы и поговорим ниже.

Непроизвольную регуляцию дыхания осуществляет дыхательный центр, находящийся в продолговатом мозге (одном из отделов заднего мозга). Вентральная (нижняя) часть дыхательного центра ответственна за стимуляцию вдоха; ее называют центром вдоха (инспнра-торным центром). Стимуляция этого центра увеличивает частоту и глубину вдоха. Дорсальная (верхняя) часть и обе латеральные (боковые) тормозят вдох и стимулируют выдох; они носят собирательное название центра выдоха (экспираторного центра).

Дыхательный центр связан с межреберными мышцами межреберными нервами, а с диафрагмой — диафрагмальными. Бронхиальное дерево (совокупность бронхов и бронхиол) иннервируется блуждающим нервом. Ритмично повторяющиеся нервные импульсы, направляющиеся к диафрагме и межреберным мышцам обеспечивают осуществление вентиляционных движений.

Расширение легких при вдохе стимулирует находящиеся в бронхиальном дереве рецепторы растяжения (проприоцепторы) и они посылают через блуждающий нерв все больше и больше импульсов в экспираторный центр. Это на время подавляет инспираторный центр и вдох. Наружные межреберные мышцы теперь расслабляются, эластично сокращается растянутая легочная ткань — происходит выдох. После выдоха рецепторы растяжения в бронхиальном дереве более уже не подвергаются стимуляции. Поэтому экспираторный центр отключается и вдох может начаться снова.

регуляция дыханияМеханизмы регуляции дыхания

Весь этот цикл непрерывно и ритмично повторяется на протяжении всей жизни организма. Форсированное дыхание осуществляется при участии внутренних межреберных мышц.

Основной ритм дыхания поддерживается дыхательным центром продолговатого мозга, даже если все входящие в него нервы перерезаны. Однако в обычных условиях на этот основной ритм накладываются различные влияния. Главным фактором, регулирующим частоту дыхания, служит не концентрация кислорода в крови, а концентрация С02. Когда уровень С02 повышается (например, при физической нагрузке), имеющиеся в кровеносной системе хеморецепторы каротидных и аортальных телец посылают нервные импульсы в инспираторный центр. В самом продолговатом мозге также имеются хеморецепторы. От инспираторного центра через диафрагмальные и межреберные нервы поступают импульсы в диафрагму и наружные межреберные мышцы, что ведет к их более частому сокращению, а следовательно, к увеличению частоты дыхания. Накапливающийся в организме С02 может причинить большой вред организму.

При соединении С02 с водой образуется кислота, способная вызвать денатурацию ферментов и других белков. Поэтому в процессе эволюции у организмов выработалась очень быстрая реакция на любое повышение концентрации С02. Если концентрация С02 в воздухе увеличивается на 0,25%, то легочная вентиляция удваивается. Чтобы вызвать такой же результат, концентрация кислорода в воздухе должна снизиться с 20% до 5%. Концентрация кислорода тоже влияет на дыхание, однако в обычных условиях кислорода всегда бывает достаточно, и потому его влияние относительно невелико. Хеморецепторы, реагирующие на концентрацию кислорода, располагаются в продолговатом мозге, в каротидных и аортальных тельцах, так же, как и рецепторы С02.

В известных пределах частота и глубина дыхания могут регулироваться произвольно, о чем свидетельствует, например, наша способность «затаить дыхание». К произвольной регуляции дыхания мы прибегаем при форсированном дыхании, при разговоре, пении, чихании и кашле.

В этом случае импульсы, возникающие в полушариях головного мозга, передаются в дыхательный центр, который и выполняет соответствующие действия.

Регуляция вдоха при помощи рецепторов растяжения и хеморецепторов представляет собой пример отрицательной обратной связи. Произвольная активность полушарий головного мозга способна преодолеть действие этого механизма.

Источник

Основными гуморальным регулятором дыхания является

3.1 Нервная регуляция дыхания

Дыхательный центр представляет собой совокупность нейронов продолговатого мозга, обладающих ритмической активностью и определяющих ритм дыхательных движений. Бульбарный дыхательный центр выполняет две основные функции:

1) регуляцию двигательной активности дыхательных мышц (двигательная функция);

2) гомеостатическую, связанную с изменением характера дыхания при сдвигах газового состава и кислотно-основного равновесия в крови и тканях.

Двигательная функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна (длительности вдоха, выдоха, величины дыхательного объема).

Нейроны дыхательного центра расположены в дорсомедиальной и вентролатеральной областях продолговатого мозга, образуя так называемую дорсальную и вентральную дыхательные группы. В указанных дыхательных группах расположены следующие виды нейронов:

1) ранние инспираторные, максимальная частота разряда которых приходится на начало инспирации;

2) поздние инспираторные нейроны, максимальная частота разряда – в конце инспирации;

3) полные инспираторные нейроны, характеризующиеся постоянной активностью в течение фазы вдоха;

4) постинспираторные нейроны, максимальный разряд которых обнаруживается в течение выдоха;

5)экспираторные нейроны, активность которых возрастает во второй части выдоха;

6) преинспираторные нейроны, максимальный пик активности проявляют перед началом вдоха.

В структурах бульбарного дыхательного центра различают так называемые респираторно-связанные нейроны, активность которых совпадает с ритмом дыхания, но они не иннервируют дыхательные мышцы, а обеспечивают иннервацию верхних дыхательных путей.

В соответствии с локализацией нейронов бульбарного дыхательного центра, различают дорсальную дыхательную группу (ДДГ) и вентральную дыхательную группу (ВДГ). Нейроны дорсальной дыхательной группы получают афферентные сигналы от легочных рецепторов растяжения по волокнам n. Vagus. Только часть инспираторных нейронов дорсальной группы дыхательного центра связана аксонами с дыхательными мотонейронами спинного мозга, преимущественно с контрлатеральной стороной.

Вентральная дыхательная группа расположена латеральнее обоюдного ядра продолговатого мозга, подразделяется на ростральную и каудальную части. Причем, ростральная часть вентральной дыхательной группы представлена ранними, поздними, полными инспираторными и постинспираторными нейронами.

Дорсальная и вентральная группы нейронов в правой и левой половинах продолговотого мозга взаимосвязаны как в пределах одной половины, так и с нейронами противоположной стороны. В синхронизации деятельности контрлатеральных нейронов бульбарного дыхательного центра участвуют проприобульбарные нейроны и экспираторные нейроны комплекса Бетцингера.

Касаясь функциональных особенностей отдельных нейронов бульбарного дыхательного центра, следует отметить, что ранние инспираторные нейроны (активируются в момент вдоха) называют еще проприобульбарными, так как не направляют свои аксоны за пределы дыхательного центра продолговатого мозга и контактируют только с другими типами дыхательных нейронов. Часть полных и поздних инспираторных нейронов направляет свои аксоны к дыхательным мотонейронам спинного мозга. Все экспираторные нейроны каудальной части вентральной дыхательной группы направляют аксоны в спинной мозг. При этом 40% экспираторных нейронов иннервируют внутренние межреберные мышцы, а 60% — мышцы брюшной стенки.

Таким образом, нейроны бульбарного дыхательного центра в зависимости от их значимости в регуляции внешнего дыхания разделяют на три группы:

1) нейроны, иннервирующие мышцы верхних дыхательных путей и регулирующие поток воздуха в дыхательных путях;

2) нейроны, синаптически связанные с мотонейронами спинного мозга и регулирующие активность мышц вдоха и выдоха;

3) проприобульбарные нейроны, участвующие в генерации дыхательного ритма, аксоны которых обеспечивают связь только с нейронами продолговатого мозга.

Подобно многим физиологическим системам контроля, система управления дыханием организована как контур отрицательной обратной связи.

Афферентация с различных рецепторных зон интегрируется в бульбарном дыхательном центре. Последний, в свою очередь, генерирует импульсацию к мотонейронам спинального отдела дыхательного центра, регулирующего сократительную активность дыхательной мускулатуры.

Читайте также:  Регулятор обдува печки приора

Важная роль в регуляции внешнего дыхания отводится центрам варолиева моста, в частности, пневмотаксическому центру. Последний включает медиальное, парабрахиальное ядро и ядро Келликера. В парабрахиальном ядре находятся преимущественно инспираторные, экспираторные и фазопереходные нейроны. Ядро Келликера содержит инспираторные нейроны.

Дыхательные нейроны моста участвуют в механизмах смены фаз дыхания, регулируют величину дыхательного объема.

Непосредственными регуляторами сократительной способности дыхательных мышц являются спинальные мотонейроны, получающие информацию по нисходящим ретикулоспинальным путям от бульбарного дыхательного центра.

Как известно, нейроны диафрагмального нерва расположены узким столбом в медиальной части вентральных рогов от СIII до CV. Подавляющее количество волокон диафрагмального нерва являются аксонами α-мотонейронов, а меньшая часть представлена афферентными волокнами мышечных и сухожильных веретен диафрагмы, а также рецепторов плевры, брюшины и свободных нервных окончаний самой диафрагмы.

Мотонейроны, иннервирующие межреберные мышцы, расположены в передних рогах спинного мозга на уровне TIV-TX, из них часть нейронов регулирует сокращения межреберных мышц, а другая часть – их позно-тоническую активность.

Обращает на себя внимание тот факт, что активность спинальных мотонейронов, обеспечивающих регуляцию двигательной активности межреберных мышц и диафрагмы, в свою очередь, находится под контролем инспираторных нейронов спинного мозга, расположенных на уровне СI-CII вблизи латерального края промежуточной зоны серого вещества.

В обеспечении дыхания, особенно в условиях патологии, участвуют мышцы брюшной стенки, получающие иннервацию от мотонейронов спинного мозга на уровне TIV-LIII.

Двум фазам внешнего дыхания (вдоху и выдоху) соответствуют три фазы активности бульбарного дыхательного центра: инспирация, пассивная контролируемая экспирация и активная экспирация. Во время фазы инспирации диафрагма и наружные межреберные мышцы увеличивают силу сокращения, активируются мышцы гортани, расширяется голосовая щель, снижается сопротивление потоку воздуха. В постинспираторную фазу дыхания происходит медленное расслабление диафрагмы, сокращение мышц гортани, выход воздуха в окружающую среду.

В фазе экспирации – экспираторный поток усиливается за счет сокращения внутренних межреберных мышц и мышц брюшной стенки.

Рефлекторная регуляция дыхания обеспечивается за счет афферентной импульсации в бульбарный дыхательный центр с различных рецепторных зон. Мощной рефлексогенной зоной является слизистая оболочка полости носа, где расположены различные типы механорецепторов, в том числе ирритантные, растяжения, а также болевой чувствительности, обоняния.

Возбуждение этих рецепторов возникает в момент каждого вдоха и приводит к формированию потока афферентной импульсации в ретикулярную формацию ствола мозга с последущей активацией бульбарного дыхательного центра, сосудодвигательного центра, гипоталамических и корковых структур мозга.

Раздражение ирритантных рецепторов слизистой оболочки носа приводит к рефлекторному сужению бронхов, голосовой щели, остановке дыхания на выдохе, развитию брадикардии, а в ряде случаев прекращению сердечных сокращений и другим изменениям (тормозной тригемино-вагусный рефлекс Кречмера ).

Слизистая трахеи и бронхов является слабой рефлексогенной зоной. В стенке крупных внелегочных бронхов и трахеи имеются высокопороговые, низкочувствительные медленноадаптирующиеся, быстроадаптирующиеся и промежуточные механорецепторы, в норме их роль в регуляции дыхания минимальна.

Чувствительность этих рецепторов возрастает при развитии воспалительного процесса в бронхолегочной системе инфекционной или аллергической природы, когда освобождаются медиаторы воспаления и аллергии: гистамин, кинины, лейкотриены, простагландины и др.. Возбудимость рецепторов трахеи и бронхов возрастает и в случае застойных явлений в малом кругу кровообращения, когда прежние объемы воздуха сильно растягивают стенки воздухоносных путей. Афферентация с рецепторов трахеи и бронхов направляется в бульбарный дыхательный центр по чувствительным волокнам n. Vagus, модулируя глубину и частоту дыхательных движений.

Мощной рефлексогенной зоной является паренхима легких, обеспечивающая не только альвеолярное дыхание, но и рефлекторную регуляцию внешнего дыхания.

Основные типы легочных вагусных афферентов включают: медленноадаптирующиеся рецепторы растяжения альвеол, быстроадаптирующиеся рецепторы, С-волокна.

Многочисленные быстроадаптирующиеся рецепторы (БАР) находятся в эпителии внутрилегочных бронхов и бронхиол. Эти рецепторы наиболее чувствительны к следующим типам раздражителей: ирритантным воздействиям, повреждению паренхимы и механическому раздражению дыхательных путей. Возбуждение БАР возникает также при глубоком дыхании, легочной эмболии и капиллярной гипертензии. Афферентация с этих рецепторов распространяется по чувствительным маломиелинизированным волокнам n. Vagus в ретикулярную формацию ствола мозга и бульбарный дыхательный центр, вызывая бронхоконстрикцию, тахипноэ, развитие кашля и тахикардии. Возбуждение этих рецепторов может быть клинически значимым в патогенезе бронхиальной астмы и нарушениях реактивности дыхательных путей.

По данным ряда авторов в паренхиме легких выделяют и БАР рецепторы спадения, реагирующие на спадение альвеол под воздействием внутрилегочных и внелегочных факторов. Афферентация с этих рецепторов поступает в бульбарный дыхательный центр по маломиелинизированным волокнам n. Vagus и обеспечивает развитие тахипноэ.

Медленноадаптирующиеся рецепторы растяжения – важная группа механорецепторов c вагусной афферентацией, расположенных в гладких мышцах воздухоносных путей. Частота импульсов с этих рецепторов возрастает по мере растяжения альвеол вдыхаемым воздухом и распространяется по толстым миелинизированным α-волокнам n. Vagus в бульбарный дыхательный отдел, обеспечивая формирование рефлекса Геринга-Брейера. Последний контролирует частоту и глубину дыхания, имеет физиологическое значение при дыхательных объемах превышающих 1 л (у взрослых при физической нагрузке). Рефлекс Геринга-Брейера более важен для регуляции дыхательного акта у новорожденных, а также в условиях патологии как один из механизмов реализации инспираторной, экспираторной и смешанной одышек.

Третьей группой легочных механорецепторов являются С-волокна – тонкие миелинизированные вагусные афференты. С – волокна оканчиваются в паренхиме легких, в бронхах и кровеносных сосудах, активируются экзогенными раздражителями и медиаторами альтерации. Активация С-волокон приводит к тахипноэ, брадикардии, гиперсекреции слизи. В состав С-волокон входят J-рецепторы, расположенные в альвеолярных перегородках в контакте с капиллярами (юкстакапиллярные рецепторы), чувствительные к интерстициальному отеку, легочной венозной гипертензии, микроэмболии, раздражающим газам и ингаляционным наркотическим веществам. Активация J-рецепторов вызывает закрытие гортани и апноэ, за которыми следует частое поверхностное дыхание, гипотензия и брадикардия.

Важная роль в рефлекторной регуляции дыхания отводится проприорецепторам суставов грудной клетки, межреберных мышц, диафрагмы, сухожильным рецепторам. Недостаточное укорочение инспираторных или экспираторных мышц усиливает импульсацию от мышечных веретен, которая через α-мотонейроны повышает активность α-мотонейронов и дозирует таким образом мышечное усилие.

В регуляции активности бульбарного дыхательного центра и внешнего дыхания принимает участие и афферентация с висцеральных рецепторов и рецепторов кожи, о чем свидетельствует развитие гипервентиляции легких при болевом и термическом раздражении.

3.2. Механизмы гуморальной регуляции дыхания

Важная роль в регуляции дыхания отводится хеморецепторам.

Изменения газового состава крови (РаО2, РаСО2) влияют на активность дыхательного центра путем возбуждения хеморецепторов каротидных и аортальных телец (периферические рецепторы), а также хеморецепторов вентральной зоны продолговатого мозга и дорсального дыхательного ядра (центральные рецепторы). Периферические хеморецепторы (рис.5) обеспечивают регуляцию частоты дыхательных движений. Адекватным раздражителем для них является уменьшение РО2 артериальной крови, в меньшей степени – увеличение РСО2 и снижение рН. Периферические хеморецепторы расположены у бифуркации общих сонных артерий на внутреннюю и наружнюю. Несмотря на свой миниатюрный размер, каротидные тельца интенсивно кровоснабжаются (1,4-2 л/мин на 100 г ткани). Этот орган особенно чувствителен к колебаниям кислорода в артериальной крови. При Ра О2 в пределах 60-80 мм рт. ст. наблюдается слабое усиление вентиляции, при Ра О2 ниже 50 мм рт. ст. возникает выраженная гипервентиляция легких. Ра СО2 и рН крови потенцируют эффекты гипоксемии на артериальные хеморецепторы и не являются адекватными раздражителями для этих рецепторов. После двустороннего удаления каротидных телец гипоксический вентиляторный ответ у человека исчезает. При отсутствии хеморецепторной стимуляции, например, при глубокой гипокапнии, повреждении синокаротидной зоны (опухоли, коллагенозы, травмы) ритмогенез дыхания снижается и полностью прекращается.

Читайте также:  Регулятор зеркала заднего вида

lekc_5.tif

Рис. 5. Каротидное тельце: 1-хеморецепторные клетки; 2-поддерживающие клетки; 3-синаптические пузырьки; 4-чувствительные нервные окончания; 5-нервное волокно

Центральные хемочувствительные клетки реагируют на отклонения РСО2 и [H+] во внеклеточной жидкости внутримозгового интерстициального пространства, регулируют глубину вдоха. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз тормозят центральные хеморецепторы.

Одной из причин высокой скорости вентиляторного ответа на гиперкапнию является легкость диффузии СО2 через барьерную систему кровь-головной мозг. Более того, повышенное РСО2 вызывает расширение сосудов, особенно церебральных, способствуя тем самым усилению диффузии СО2 через гемато-энцефалический барьер.

Источник

Основы физиологии дыхания

Медицинский эксперт статьи

Алексей Портнов, медицинский редактор
Последняя редакция: 11.04.2020

Основной (хотя и не единственной) функцией легких является обеспечение нормального газообмена. Внешнее дыхание — это процесс газообмена между атмосферным воздухом и кровью в легочных капиллярах, в результате которого происходит артериализация состава крови: повышается давление кислорода и снижается давление СО2. Интенсивность газообмена в первую очередь определяется тремя патофизиологическими механизмами (легочной вентиляцией, легочным кровотоком, диффузией газов через альвеолярно-капиллярную мембрану), которые обеспечиваются системой внешнего дыхания.

Легочная вентиляция

Легочная вентиляция определяется следующими факторами (А.П. Зильбер):

  1. механическим аппаратом вентиляции, который, в первую очередь, зависит от активности дыхательных мышц, их нервной регуляции и подвижности стенок грудной клетки;
  2. эластичностью и растяжимостью легочной ткани и грудной клетки;
  3. проходимостью воздухоносных путей;
  4. внутрилегочным распределением воздуха и его соответствием кровотоку в различных отделах легкого.

При нарушениях одного или нескольких из приведенных выше факторов могут развиваться клинически значимые вентиляционные нарушения, проявляющиеся несколькими типами вентиляционной дыхательной недостаточности.

Из дыхательных мышц наиболее значимая роль принадлежит диафрагме. Ее активное сокращение приводит к уменьшению внутригрудного и внутриплеврального давления, которое становится ниже атмосферного давления, в результате чего и происходит вдох.

Вдох осуществляется за счет активного сокращения дыхательных мышц (диафрагмы), а выдох происходит в основном за счет эластической тяги самого легкого и грудной стенки, создающей экспираторный градиент давления, в физиологических условиях достаточный для выведения воздуха через воздухоносные пути.

При необходимости увеличения объема вентиляции происходит сокращение наружных межреберных, лестничных и грудинно-ключично-сосцевидных мышц (дополнительные инспираторные мышцы), также приводящее к увеличению объема грудной клетки и снижению внутригрудного давления, что способствует вдоху. Дополнительными экспираторными мышцами считают мышцы передней брюшной стенки (наружные и внутренние косые, прямые и поперечные).

Эластичность легочной ткани и грудной клетки

Эластичность легких. Движение потока воздуха во время вдоха (внутрь легких) и выдоха (из легких) определяется градиентом давления между атмосферой и альвеолами так называемым трансторакальным давлением (Р тр/ т):

Ртр/т = Р альв — Р атм где Р алв, — альвеолярное, а Р атм — атмосферное давление.

Во время вдоха Р альв и Р тр/т становятся отрицательными, во время выдоха — положительными. В конце вдоха и в конце выдоха, когда воздух по воздухоносным путям не движется, а голосовая щель открыта, Р альв равно Р атм.

Уровень Р альв в свою очередь зависит от величины внутриплеврального давления (Р пл) и так называемого давления эластической отдачи легкого (Р эл):

Давление эластической отдачи — это давление, создаваемое эластической паренхимой легкого и направленное внутрь легкого. Чем выше эластичность легочной ткани, тем более значительным должно быть снижение внутриплеврального давления, чтобы произошло расправление легкого во время вдоха, и, следовательно, тем большей должна быть активная работа инспираторных дыхательных мышц. Высокая эластичность способствует более быстрому спадению легкого во время выдоха.

Еще один важный показатель, обратный эластичности легочной ткани — апатическая растяжимость легкого — представляет собой меру поддатливости легкого при его расправлении. На растяжимость (и величину давления эластической отдачи) легкого влияет множество факторов:

  1. Объем легкого: при малом объеме (например, в начале вдоха) легкое более податливо. При больших объемах (например, на высоте максимального вдоха) растяжимость легкого резко уменьшается и становится равной нулю.
  2. Содержание эластических структур (эластина и коллагена) в легочной ткани. Эмфизема легких, для которой, как известно, характерно снижение эластичности легочной ткани, сопровождается увеличением растяжимости легкого (снижением давления эластической отдачи).
  3. Утолщение альвеолярных стенок вследствие их воспалительного (пневмония) или гемодинамического (застой крови в легком) отека, а также фиброзирование ткани легкого существенно уменьшают растяжимость (податливость) легкого.
  4. Силы поверхностного натяжения в альвеолах. Они возникают па поверхности раздела газа и жидкости, которая изнутри тонкой пленкой выстилает альвеолы, и стремятся уменьшить площадь этой поверхности, создавая внутри альвеол положительное давление. Таким образом, силы поверхностного натяжения вместе с эластическими структурами легких обеспечивают эффективное спадение альвеол во время выдоха и в то же время препятствуют расправлению (растяжению) легкого во время вдоха.

Сурфактант, выстилающий внутреннюю поверхность альвеолы — это вещество, уменьшающее силу поверхностного натяжения.

Активность сурфактанта тем выше, чем он плотнее. Поэтому па вдохе, когда плотность и, соответственно, активность сурфактанта уменьшается, силы поверхностного натяжения (т.е. силы, стремящиеся сократить поверхность альвеол) увеличиваются, что способствует последующему спадению легочной ткани во время выдоха. В конце выдоха плотность и активность сурфактанта возрастают, а силы поверхностного натяжения уменьшаются.

Таким образом, после окончания выдоха, когда активность сурфактанта максимальна, а силы поверхностного натяжения, препятствующие расправлению альвеол, минимальны, дли последующего расправления альвеол на вдохе требуются меньшие затраты энергии.

Важнейшими физиологическими функциями сурфактанта являются:

  • увеличение растяжимости легкого благодаря снижению сил поверхностного натяжения;
  • уменьшение вероятности спадения (коллапса) альвеол во время выдоха, поскольку при малых объемах легкого (в конце выдоха) его активность максимальна, а силы поверхностного натяжения минимальны;
  • предотвращение перераспределения воздуха из более мелких в более крупные альвеолы (согласно закону Лапласа).

При заболеваниях, сопровождающихся дефицитом сурфактанта, ригидность легких увеличивается, альвеолы спадаются (развиваются ателектазы), возникает дыхательная недостаточность.

Пластическая отдача грудной стенки

Эластические свойства грудной стенки, которые также оказывают большое влияние на характер легочной вентиляции, определяются состоянием костного скелета, межреберных мышц, мягких тканей, париетальной плевры.

При минимальных объемах грудной клетки и легких (во время максимального выдоха) и в начале вдоха эластическая отдача грудной стенки направлена кнаружи, что создает отрицательное давление и способствует расправлению легкого. По мере увеличения объема легкого во время вдоха эластическая отдача грудной стенки уменьшатся. Когда объем легкого достигает примерно 60% величины ЖЕЛ, эластическая отдача грудной стенки уменьшается до нуля, т.е. до уровня атмосферного давления. При дальнейшем увеличении объема легких эластическая отдача грудной стенки направлена кнутри, что создает положительное давление и способствует спадению легких во время последующего выдоха .

Читайте также:  Всережимный регулятор топливный насос высокого давления

Некоторые заболевания сопровождаются повышением ригидности грудной стенки, что оказывает влияние на способность грудной клетки растягиваться (во время вдоха) и спадаться (во время выдоха). К числу таких заболеваний относятся ожирение, кифо- сколиоз, эмфизема легких, массивные шварты, фиброторакс и др.

Проходимость воздухоносных путей и мукоцилиарный клиренс

Проходимость воздухоносных путей во многом зависит от нормального дренирования трахеобронхиального секрета, что обеспечивается, прежде всего, функционированием механизма мукоцилиарного очищения (клиренса) и нормальным кашлевым рефлексом.

Защитная функция мукоцилиарного аппарата определяется адекватной и согласованной функцией мерцательного и секреторного эпителия, в результате чего тонкая пленка секрета перемещается по поверхности слизистой оболочки бронхов и инородные частицы удаляются. Перемещение бронхиального секрета происходит за счет быстрых толчков ресничек в краниальном направлении с более медленной отдачей в противоположную сторону. Частота колебаний ресничек составляет 1000-1200 в мин, что обеспечивает движение бронхиальной слизи со скоростью 0,3-1,0 см/мин в бронхах и 2-3 см/мин в трахее.

Следует также помнить, что бронхиальная слизь состоит из 2-х слоев: нижнего жидкого слоя (золя) и верхнего вязко-эластичного — геля, которого касаются верхушки ресничек. Функция реснитчатого эпителия во многом зависит от соотношения толщины юля и геля: увеличение толщины геля или уменьшение толщины золя приводят к снижению эффективности мукоцилиарного клиренса.

На уровне респираторных бронхиол и альвеол мукоцилиарного аппарата ист. Здесь очищение осуществляется с помощью кашлевого рефлекса и фагоцитарной активности клеток.

При воспалительном поражении бронхов, особенно хроническом, эпителий морфологически и функционально перестраивается, что может приводить к мукоцилиарной недостаточности (снижению защитных функций мукоцилиарного аппарата) и скоплению мокроты в просвете бронхов.

В патологических условиях проходимость воздухоносных путей зависит не только от функционирования механизма мукоцилиарного очищения, но и от наличия бронхоспазма, воспалительного отека слизистой оболочки и феномена раннего экспираторного закрытия (коллапса) мелких бронхов.

Регуляция просвета бронхов

Тонус гладкой мускулатуры бронхов определяется несколькими механизмами, связанными со стимуляцией многочисленных специфических рецепторов бронхов:

  1. Холинергические (парасимпатические) влияния происходят в результате взаимодействия нейромедиатора ацетилхолина со специфическими мускариновыми М-холинорецепторами. В результате такого взаимодействия развивается бронхоспазм.
  2. Симпатическая иннервация гладкой мускулатуры бронхов у человека выражена в малой степени, в отличие, например, от гладкой мускулатуры сосудов и сердечной мышцы. Симпатические влияния на бронхи осуществляются в основном благодаря воздействию циркулирующего адреналина на бета2-адренорецепторы, что приводит к расслаблению гладкой мускулатуры.
  3. На тонус гладкой мускулатуры влияет также т.н. «неадренергическая, нехолинергическая» нервная система (НАНХ), волокна которой проходят в составе блуждающего нерва и высвобождают несколько специфических нейромедиаторов, взаимодействующих с соответствующими рецепторами гладкой мускулатуры бронхов. Важнейшими из них являются:
    • вазоактивный интестинальный полипептид (VIP);
    • субстанция Р.

Стимуляция VIP-рецепторов приводит к выраженному расслаблению, а бета-рецепторов к сокращению гладких мышц бронхов. Считается, что нейроны НАНХ-системы оказывают наибольшее влияние па регуляцию просвета воздухоносных путей (К.К. Murray).

Кроме того, в бронхах содержится большое количество рецепторов, взаимодействующих с различными биологически активными веществами, в том числе с медиаторами воспаления — гистамином, брадикинином, лейкотриенами, простагландинами, фактором активации тромбоцитов (ФАТ), серотонином, аденозином и др.

Тонус гладкой мускулатуры бронхов регулируется несколькими нейрогуморальными механизмами:

  1. Дилатация бронхов развивается при стимуляции:
    • бета2-адренорецепторов адреналином;
    • VIР-рецепторов (системы НАНХ) вазоактивным интестинальным полипептидом.
  2. Сужение просвета бронхов возникает при стимуляции:
    • М-холинергических рецепторов ацетилхолином;
    • рецепторов к субстанции Р (системы НАНХ);
    • Альфа-адренорецепторов (например, при блокаде или снижении чувствительности бета2-адренергических рецепторов).

Внутрилегочное распределение воздуха и его соответствие кровотоку

Неравномерность вентиляции легких, существующая в норме, определяется, прежде всего, неоднородностью механических свойств легочной ткани. Наиболее активно вентилируются базальные, в меньшей степени — верхние отделы легких. Изменение эластических свойств альвеол (в частности, при эмфиземе легких) или нарушение бронхиальной проходимости значительно усугубляют неравномерность вентиляции, увеличивают физиологическое мертвое пространство и снижают эффективность вентиляции.

Диффузия газов

Процесс диффузии газов через альвеолярно-капиллярного мембрану зависит

  1. от градиента парциального давления газов по обе стороны мембраны (в альвеолярном воздухе и в легочных капиллярах);
  2. от толщины альвеолярно-капиллярной мембраны;
  3. от общей поверхности зоны диффузии в легком.

У здорового человека парциальное давление кислорода (РО2) в альвеолярном воздухе в норме составляет 100 мм рт. ст., а в венозной крови — 40 мм рт. ст. Парциальное давление СО2 (РСО2) в венозной крови составляет 46 мм рт. ст., в альвеолярном воздухе — 40 мм рт. ст. Таким образом, градиент давления по кислороду составляет 60 мм рт. ст., а по углекислому газу — всего 6 мм рт. ст. Однако скорость диффузии СО2 через альвеолярно-капиллярную мембрану примерно в 20 раз больше, чем О2. Поэтому обмен СО2 в легких происходит достаточно полно, несмотря на сравнительно низкий градиент давления между альвеолами и капиллярами.

Альвеолярно-капиллярная мембрана состоит из сурфактантного слоя, выстилающего внутреннюю поверхность альвеолы, альвеолярной мембраны, интерстициального пространства, мембраны легочного капилляра, плазмы крови и мембраны эритроцита. Повреждение каждого из этих компонентов альвеолярно-капиллярной мембраны может приводить к существенному затруднению диффузии газов. Вследствие этого при заболеваниях указанные выше значения парциальных давлений О2 и СО2 в альвеолярном воздухе и капиллярах могут существенно изменяться.

Легочный кровоток

В легких существуют две системы кровообращения: бронхиальный кровоток, относящийся к большому кругу кровообращения, и собственно легочный кровоток, или так называемый малый круг кровообращения. Между ними как при физиологических, так и при патологических условиях существуют анастомозы.

Легочный кровоток в функциональном отношении расположен между правой и левой половинами сердца. Движущей силой легочного кровотока служит градиент давления между правым желудочком и левым предсердием (в норме составляющий около 8 мм рт. ст.). В легочные капилляры по артериям поступает бедная кислородом и насыщенная углекислым газом венозная кровь. В результате диффузии газов в области альвеол происходят насыщение крови кислородом и ее очищение от углекислого газа, в результате чего от легких в левое предсердие по венам оттекает артериальная кровь. На практике эти величины могут колебаться в значительных пределах. Особенно это относится к уровню РаО2 в артериальной крови, который составляет обычно около 95 мм рт. ст.

Уровень газообмена в легких при нормальной работе дыхательных мышц, хорошей проходимости воздухоносных путей и малоизмененной эластичности легочной ткани определяется скоростью перфузии крови через легкие и состоянием альвеолярно-капиллярной мембраны, через которую под действием градиента парциального давления кислорода и углекислого газа осуществляется диффузия газов.

Вентиляционно-перфузионные отношения

Уровень газообмена в легких, помимо интенсивности легочной вентиляции и диффузии газов, определяется также величиной вентиляционно-перфузионного отношения (V/Q). В норме при концентрации кислорода но вдыхаемом воздухе 21% и нормальном атмосферном давлении отношение V/Q составляет 0,8.

При прочих равных условиях уменьшение оксигенации артериальной крови может быть обусловлено двумя причинами:

  • уменьшением легочной вентиляции при сохраненном прежнем уровне кровотока, когда V/Q 1,0).

Источник