Меню

Определение главных напряжений сопромат



Главные напряжения и главные площадки

Главные площадки – это площадки, проходящие через исследуемую точку, на которых Касательные напряжения отсутствуют.

Главные напряжения – это возникающие на главных площадках нормальные напряжения

В общем случае нагружения (при объемном напряженном состоянии) среди множества площадок, проходящих через некоторую точку тела, всегда можно найти три взаимно перпендикулярные главные площадки . В окрестности любой точки деформированного твердого тела всегда можно выделить элементарный параллелепипед, ориентированный в пространстве таким образом, что по его граням будут возникать только нормальные (главные) напряжения (см. рис. 6.2).

изображение Главные площадки напряжения сопромат

Главные напряжения обозначаются изображение Главные площадки напряжения сопромат. Индексы расставляются после вычисления главных напряжений. Должно выполняться неравенство:

изображение Главные площадки напряжения сопромат

изображение Главные площадки напряжения сопромат– наибольшее, а изображение Главные площадки напряжения сопромат– наименьшее нормальное напряжение в исследуемой точке тела.

В частном случае нагружения может получиться так, что все три главных напряжения в исследуемой точке тела равны между собой. Тогда любая площадка, проведенная через эту точку, является главной площадкой .

По значениям главных напряжений дается оценка прочности материала в исследуемой точке деформированного твердого тела.

При плоском напряженном состоянии на грани элементарного параллелепипеда с нормалью х полностью отсутствует не только касательное, но и нормальное напряжение. Площадка тоже является главной площадкой , главное напряжение на которой равно нулю.

Пусть мы нашли для случая плоского напряженного состояния, что экстремальные напряжения в исследуемой точке тела равны изображение Главные площадки напряжения сопроматМПа, а изображение Главные площадки напряжения сопроматМПа. Индексы главных напряжений : изображение Главные площадки напряжения сопроматМПа , изображение Главные площадки напряжения сопроматМПа, изображение Главные площадки напряжения сопроматМПа.

Если получилось изображение Главные площадки напряжения сопроматМПа, а изображение Главные площадки напряжения сопроматМПа, то тогда изображение Главные площадки напряжения сопроматМПа , изображение Главные площадки напряжения сопроматМПа , изображение Главные площадки напряжения сопроматМПа .

Источник

Определение главных напряжений сопромат

Тензор напряжений обладает свойством симметрии. Для доказательства этого свойства рассмотрим приведенный в лекции 5 элементарный параллелепипед с действующими на его площадках компонентами тензора напряжений. Так как тело находится в равновесии, следовательно, находится в равновесии любая его часть, в том числе и элементарный объем. Запишем одно из шести уравнений равновесия этого объема, а именно — сумму моментов всех сил относительно оси Ох. Все силы, кроме двух, либо не создают момента относительно ocи Ох, либо взаимно уничтожаются. Отличные от нуля моменты создают компоненты (верхняя грань) и (права грань):

Читайте также:  Куда поставить стабилизатор напряжения

После сокращения на элемент объема dV=dxdydz получим

Аналогично, приравнивая нулю сумму моментов всех сил относительно осей Оу и Ог, получим еще два соотношения

Эти условия симметрии и тензора напряжений называются также условиями парности касательных напряжений: касательные напряжения, действующие по двум взаимно перпендикулярным площадкам в направлениях, ортогональных ребру, образованному пересечением этих площадок, равны по величине. С учетом этих свойств из девяти компонент тензора напряжений независимыми оказываются шесть компонент.

Покажем теперь, что компоненты тензора напряжений определенные для трех взаимно перпендикулярных площадок, полностью характеризуют напряженное состояние в точке, т. е. позволяют вычислить компоненты вектора напряжений на площадках, произвольно ориентированных относительно выбранной системы координат. Для этого рассмотрим элементарный объем, образованный сечением параллелепипеда, изображенного на рис. 1, плоскостью, пересекающей координатные оси и имеющей единичный вектор нормали

Рис.1. Элементарный четырехгранник с компонентами напряженного состояния.

п с компонентами nx, ny, nz. На гранях полученного таким образом бесконечно малого тетраэдра действуют напряжения, показанные на рис. 1. При этом вектор напряжений pn на наклонной площадке разложен па составляющие рx, рy, рz вдоль координатных осей. Площади граней, ортогональных координатным осям и вектору нормали, обозначим соответственно dFx, dFy, dFz, dF. Эти площади связаны между собой соотношениями

вытекающими из того, что грани, ортогональные координатным осям, есть проекции наклонной площадки на соответствующую координатную плоскость.

Проектируя силы, действующие на гранях элементарного тетраэдра, на координатные оси, получим уравнения равновесия для рассматриваемого объема. Например, проекции всех поверхностных сил на ось Ох дают

С учетом соотношений (1) после сокращения на dF получим уравнение, связывающее проекцию рx вектора напряжений с соответствующими компонентами тензора напряжений. Объединяя это уравнение с двумя аналогичными уравнениями, полученными проектированием сил на оси Оy и Оz, приходим к следующим соотношениям

Читайте также:  При каком напряжение происходит пробой

носящим название формул Коши. Эти формулы определяют вектор напряжений на произвольно выбранной площадке с вектором п через компоненты тензора напряжений.

Формулы (2) позволяют вычислить через компоненты тензора напряжений

Источник