Меню

Ldo стабилизаторы sot 23



Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Несколько фактов, которые нужно знать о стабилизаторах LDO

LDO-стабилизаторы (Linear Drop-Out regulators) представляют собой отличное средство для получения стабилизированного напряжения для питания тех или иных электронных компонентов.

LDO

Несмотря на кажущуюся простоту LDO-стабилизаторы имеют свои некоторые нюансы, несоблюдение которых может привести к неправильной работе схемы. И в данном материале мы поговорим о некоторых важных моментах использования.

Корпуса регуляторов напряжения LDO: Small Transistor Outline (SOT)

При выборе LDO широко распространен вариант корпусирования SOT. Вы можете увидеть названия корпусов, такие как SOT-223-5, SOT23-3 и SOT23.

Корпуса LDO

SOT23 представляет собой 3-выводной корпус, распространенный для дискретных транзисторов и диодов. Вариант SOT23-5 используется для ИС, включая регуляторы напряжения. Большие версии – SOT223 и SOT223-5. SOT223 представляет собой 4- выводной корпус, поэтому его иногда называют «SOT223-4». SOT223-5 представляет собой 5- выводной корпус.

Технически одним выводом корпуса SOT223 является контактная площадка. Это помогает создать теплоотвод от внутреннего кремния к внешней печатной плате.

Распиновка LDO-стабилизаторов может не совпадать

Вроде как это очевидное утверждение. Однако, если вы посмотрите только на несколько LDO с похожими корпусами, вы можете быстро предположить, что распиновка одинакова для всех из них.

Можно взять, например, семь разных регуляторов LDO с напряжением 3,3 вольт и током не менее 300 мА. Из них большинство выводов будут находиться в одном и том же месте. Но это не значит, что вы можете просто взглянуть на распиновку и сказать: «Я знаю, выход – это контакт 5», а затем предположить, что все остальные линии там, где вы и ожидаете. Даже если совпадают имена или функции вывода, все равно могут быть различия.

NC, Bypass и Adjust

Сравнивая многие LDO, можно обнаружить, что на различных моделях у дополнительного вывода могут быть различные функции.

NC (No Connect) – то есть не подключен. Нет необходимости подключать вывод. Обратите особое внимание на техническое описание. Иногда разработчик микросхем говорят: «Не подключайте ни к чему, включая землю».

Bypass – байпас улучшает подавление пульсаций на выходе. Регулятор LDO, который подключает внутреннее опорное напряжение к выводу, дает вам возможность добавить крошечный конденсатор. Этот конденсатор фильтрации может улучшить реакцию регулятора. Независимо от того, что предлагают даташиты, лучше использовать только керамический конденсатор типа C0G.

Adjust – доступен только на регуляторах с регулируемым выходом. Вместо фиксированного внутреннего вида обратной связи этот вывод позволяет получить обратную связь через выходной делитель напряжения. Этот делитель устанавливает выходное напряжение для регулятора LDO. Иногда в документации рекомендуют использовать небольшой конденсатор в этой цепи, чтобы минимизировать пульсации. Следуйте их рекомендациям.

Не у всех LDO выводы Enable и Shutdown одинаково работают

На многих стабилизаторах есть вывод «enable» или «shutdown». Они определяют включение или выключение компонента. Но не у всех LDO они работают одинаково. В документации можно найти нюансы, которые наблюдаются при включении или отключении. Например, при отключении используется подтягивающий резистор на землю.

LDO

Этот путь разряжает выходной конденсатор (конденсаторы). Различные таблицы даташитов называют значение этого резистора по-разному. Техническое описание либо даст вам значение для этого резистора, который, по-видимому, находится в диапазоне 25-150 Ом, или просто предоставляет графики. Левый рисунок ниже — наиболее распространенный вид. Если вы знаете, как выглядят графики зарядки и разрядки конденсаторов, это выглядит довольно знакомо. Однако кривые RC зависят как от величины сопротивления, так и от емкости. Таким образом, ваше выходное напряжение, подключенная нагрузка и размер конденсатора влияют на кривую.

LDO

Справа показан график NCP4625 компании ON Semiconductor, на нем представлены различные кривые для VIN и VOUT, а также различные токи IOUT. Такое поведение и значения сопротивлений стоит иметь ввиду при разработке устройства с LDO.

Источник

LDO-стабилизаторы напряжения ON Semi. Выбор и применение

Доминирующим направлением компании ON Semiconductor остается управление питанием (Power Management). В этой категории линейные регуляторы традиционно являются одними из самых востребованных на современном рынке полупроводниковой продукции. Особым спросом пользуются линейные стабилизаторы с малым падением напряжения LDO (Low DropOut), которых в номенклатуре ON Semiconductor насчитываются десятки типов. Основными преимуществами LDO-стабилизаторов напряжения ON Semi является их широкая номенклатура для различных приложений, высокое качество и надежность при невысоких ценах

Читайте также:  Как стоят стойки стабилизатора задние рено дастер

История микросхем интегральных стабилизаторов напряжения начинается с 1967 г. С тех пор интегральные стабилизаторы напряжения являются неотъемлемой частью современной радиоэлектронной аппаратуры, характеристики которой в значительной степени определяются точностью и стабильностью питающих напряжений. Стабилизаторы с малым падением напряжения используют в качестве регулирующего элемента биполярный PNP-транзистор или полевой транзистор (одиночный либо составной). Падение напряжения в этом случае составляет десятые доли вольта, что, безусловно, расширяет область применения LDO-стабилизаторов.

В настоящее время в номенклатуре ON Semi несколько десятков типов LDO-стабилизаторов, отличающихся величиной минимального напряжения, диапазоном рабочих выходных токов и входного напряжения, числом каналов, уровнем шумов, а также наличием дополнительных функций. Каждый квартал в номенклатуре появляются новые микросхемы LDO. Целью новых разработок является: расширение номенклатуры для успешной конкуренции во всех нишах, снижение цены, а также разработка новых типов по новым технологиям для адекватной замены морально устаревших позиций.

Выпускаемые промышленностью современные LDO-стабилизаторы можно условно разделить на несколько групп в соответствии с их параметрами и областью применения:

– типовые с фиксированным и регулируемым выходным напряжением;

– экономичные (с малым статическим током);

– со сверхмалым (Ultra LDO — 200 мВ и менее) падением напряжения;

– прецизионные с точностью установки выходного напряжения выше 1%;

– быстродействующие (с быстрым откликом);

– многоканальные (сдвоенные и т.д.);

– специализированные с дополнительными сервисными функциями.

Такие сервисные устройства как схемы защиты от перегрузки по току и перегрева, а также схемы отключения нагрузки при повышении и понижении выходного напряжения стабилизатора, в настоящее время являются стандартными и используются в большинстве LDO. У стабилизаторов, предназначенных для работы в устройствах с батарейным питанием, делается защита по входу от переполюсовки и значительного превышения входного напряжения при неправильном подключении элементов питания. Ряд микросхем имеет управляющий вход On/Off (Shutdown) установки дежурного режима (Sleep Mode), в котором отключается выходное напряжение и существенно снижается ток потребления. Во многих современных типах LDO введена и защита от протекания обратного тока (Reverse Bias Protected). Этот нежелательный эффект возникает при резком падении напряжения на входе до нуля и его сохранении на выходе за счет конденсатора. В стабилизаторе с биполярными регулирующими транзисторами ток в этом случае начнет протекать через p-n-переход от выхода к входу. Защита реализована за счет введения дополнительного транзистора, который принудительно разряжает выходную емкость стабилизатора при уменьшении входного напряжения ниже порога.

Классификация LDO

По области применения LDO-стабилизаторы разделяются на универсальные (Multi-market) и стабилизаторы для приложений с расширенным температурным диапазоном (исполнение Automotive). LDO класса Automotive предназначены не только для автомобильных и транспортных приложений, но и для любых приложений с жесткими условиями эксплуатации. На рисунке 1 представлена номенклатура универсальных LDO-стабилизаторов напряжения компании ON Semiconductor.

Особый интерес представляют новые изделия, появившиеся на рынке в последние годы. Любое новое изделие выводится на рынок с целью либо восполнить пробел в существующей линейке, либо заменить имеющееся изделие новым с улучшенными параметрами, востребованными в современных приложениях.

Эффективность LDO может проявляться при малом падении напряжения между входом и выходом. Другое преимущество LDO перед импульсными источниками напряжения — отсутствие импульсных помех и низкий уровень ЭМИ.

Основной сектор применения LDO — это, конечно, портативные приборы с батарейным питанием. Другой сектор — вторичные источники для питания процессоров и ПЛИС, в которых требуются разные напряжения питания. В этом случае базовым источником питания устройства, например, является источник 3,3 или 5 В, а напряжения меньшего номинала формируются с помощью LDO..

Стабилизаторы по технологии NoCap

На выходе первых разработанных LDO-стабилизаторов напряжения для обеспечения устойчивости работы требовалась установка довольно дорогих электролитических конденсаторов Low ESR большой емкости и габаритов. По мере внедрения новых технологий LDO стали появляться микросхемы, в которых не требуется установка конденсаторов Low ESR большой емкости. Вместо них достаточно было установить недорогие и более компактные керамические конденсаторы малой емкости. Этот тип стабилизаторов получил название NoCap. В большинстве случаев для обеспечения устойчивости достаточно установки керамических конденсаторов до 1 мкФ, которые за последнее время не только заметно подешевели, но и уменьшились в размерах. Почти все новые типы LDO не требуют установки на выходе дорогих конденсаторов Low ESR, поэтому практически все современные LDO можно условно отнести к типу NoCap. Однако в номенклатуре LDO сохранилась такая классификация. К ним можно отнести серию NCP552, NCP553, NCV553.

Читайте также:  Стабилизатор defender avr real 1000

Эта серия стабилизаторов напряжения NoCap с фиксированным напряжением предназначена для приборов с батарейным питанием, для которых важен малый ток покоя. Выходной ток стабилизатора составляет –80 мА, а ток покоя — всего 2,8 мкА. В качестве проходного элемента используется мощный транзистор PMOS. Имеется защита от перегрева. Основное достоинство этих устройств в том, что для обеспечения устойчивой работы стабилизатора достаточно установки недорогой керамической емкости на выходе. Стабилизатор может работать и без выходного конденсатора. На входе стабилизатора рекомендуется установить керамическую емкость на 1 мкФ, а на выходе для устойчивости достаточно поставить керамический конденсатор на 0,1 мкФ.

Микросхема выполнена в субминиатюрном корпусе для поверхностного монтажа типа SC-82 AB. Она поставляется в версиях с фиксированными выходными напряжениями: 1,5; 1,8; 2,5; 2,7; 2,8; 3,0; 3,3 и 5,0 В. Возможны и заказные исполнения. Дискретность установки напряжения для заказных версий составляет 100 мВ.

Портативные приборы с батарейным питанием

Это, несомненно, самый доминирующий сектор, в котором в полной мере могут реализоваться все преимущества LDO — малое падение напряжение, высокое быстродействие, наличие сервисных функций, различные и гибкие режимы энергосбережения. Область применения подобных устройств крайне широка — это мобильные средства связи, портативные компьютеры, устройства питания микроконтроллеров, автономные видеокамеры слежения и т.д.

Использование LDO в телекоммуникационном оборудовании

Как правило, в таком оборудовании используется AC/DC-преобразователь на выходные напряжения 5 или 3,3 В. Конструкция может содержать базовую плату и интерфейсные мезонинные модули. В базовой (материнской) плате используются напряжения 2,5; 2,0; 1,8 В для питания ядер ПЛИС, DSP или коммуникационных контроллеров, процессоров или трансиверов. На каждом мезонинном модуле могут использоваться свои локальные источники LDO на 2,5/2,0/1,8 В. При невысоком потреблении тока, например, до 50 мА, могут использоваться LDO в корпусах SOT-23 или SOT-83. На токи 150–300 мА для источников 2,5/2,0 В следует применять LDO в корпусах с большей рассеиваемой мощностью.

Исполнение Automotive

Микросхемы исполнения Automotive имеют в названии типа префикс NCV. Стабилизаторы для автомобильных приложений выделены в отдельную группу, поскольку область применения накладывает на изделия ряд специфических требований:

– максимальное значение входного напряжения не ниже 12 В, что определяется напряжением сети питания автомобиля;

– устойчивость к кратковременным броскам напряжения в сети;

– широкий диапазон рабочих температур (–40…125°С);

– температурный диапазон хранения –65…150°С.

Некоторые продукты ON Semi для данного исполнения имеют даже более широкий температурный диапазон. На первый взгляд, использование LDO в автомобильной электронике нецелесообразно: на фоне потребляемого источниками света тока 10…20 А при запущенном двигателе и работе генератора экономия единиц мА не вполне оправдана. Но часть электроники продолжает работать и при выключенном моторе. Это сервисные системы — охранная сигнализация, часы реального времени и т.д. Для питания управляющих микроконтроллеров используются напряжения 3…5 В. Система должна сохранять работоспособность даже при разряде автомобильного аккумулятора ниже порогового уровня, когда энергии и тока недостаточно для работы стартера, или же когда просадка напряжения аккумулятора в момент работы стартера достигает 6 В. При больших токовых нагрузках использование LDO проблематично. В этих случаях лучше применять стабилизаторы напряжения на основе импульсных преобразователей.

5,0-В LDO-стабилизатор NCV4949A с формирователем сигнала Reset и датчиком входного напряжения

Микросхема NCV4949A стабилизатора LDO на 5 В (см. рис. 2) имеет дополнительные функции, такие как формирование сигнала сброса для микроконтроллера и пороговый датчик входного напряжения. Микросхема предназначена для формирования питания встроенных микроконтроллерных бортовых систем, в частности, автомобильных.

– диапазон входных напряжений: 5,0…28 В;

Читайте также:  Что соединяет стойка стабилизатора

– броски напряжения: до 40 В;

– высокоточное выходное напряжение: 5,0 В 1%;

– нагрузочная способность: до 100 мА;

– падение напряжения на стабилизаторе: менее 0,4 В;

– схема формирования сигнала сброса по изменению выходного напряжения;

– программируемая задержка импульса сброса;

– компаратор низкого входного напряжения;

– схема защиты от перегрева и КЗ на выходе.

Стабилизатор NCV8508B с дополнительными функциями RESET, Wakeup, Watchdog

Микросхема NCV8508B имеет исполнения с выходным напряжением 5,0 и 3,3 В. Это микромощный прецизионный LDO-стабилизатор на ток 250 мA. Логика управления микропроцессора включает сигналы сброса RESET (с задержкой), инициализации (Wakeup) и сторожевой таймер (Watchdog). Функция Wakeup пробуждает микропроцессор из режима Sleep. Сигнал Wakeup формируется по таймеру Watchdog. При нормальной работе микропроцессор производит регулярный сброс сторожевого таймера по входу WDI. Сигнал RESET формируется при уменьшении выходного напряжения ниже 1,0 В. Сигнал RESET активируется и при начальном включении питания. Задержка включения регулируется внешним резистором Rdelay. Ток покоя микросхемы: – 100мкА. Применение: модули управления двигателем, электротранспорт.

– выходное напряжение: версии 5,0 и 3,3 В;

– точность выходного напряжения: ±3,0%;

– выходной ток: 250 мА;

– ток покоя не зависит от нагрузки: 100 мкА;

– защита: от перегрева, короткого замыкания, бросков входного напряжения до 45 В.

На рисунке 3 показаны временные диаграммы сигналов, формируемых на выводах микросхемы.

Микросхема NCV8537 с функцией Power Good

Микросхема LDO-стабилизатора NCV8537 обеспечивает выходной ток 500 мА. Она является модификацией популярной микросхемы NCV8535, сохраняя все лучшие качества предшественника, в т.ч. высокую точность, отличную стабильность работы, низкий уровень выходного шума, защиту от протекания обратного тока. В данной модификации добавлена дополнительная сервисная функция — выходной сигнал Power Good пороговой схемы мониторинга выходного напряжения. Если напряжение становится ниже порога, на выходе PG появляется низкий логический уровень. Диапазон входных напряжений: 2,9…12 В.

Микросхема доступна в исполнениях с выходными напряжениями 1,8; 2,5; 3,3; 5,0 В, а также с регулировкой выходного напряжения. Корпус DFN10.

– сетевые телекоммуникационные устройства, DSL/кабельные модемы;

– аудиосистемы для автомобильных приложений;

Многоканальные LDO

Двухканальный 3,3-В микромощный стабилизатор CS8363 с формирователями сигналов ENABLE и RESET

На рисунке 4 показана схема применения двухканального стабилизатора CS8363. После подачи напряжения на вход стабилизатора в нем формируется импульсный сигнал начального сброса микроконтроллера, и подается питание по основному каналу. Второй канал стабилизатора обеспечивает питание периферийных устройств, подключаемых к микроконтроллеру. Напряжение на выходе этого канала регулируется. Включение канала питания производится по сигналу ENABLE, формируемому микроконтроллером.

Как можно заметить, в данном типе LDO рекомендуется установка на выходах конденсаторов Low ESR довольно большой емкости — 10 мкФ. В настоящее время на рынке доступны недорогие керамические конденсаторы емкостью 10–20 мкФ, которые можно устанавливать вместо дорогих танталовых или ниобиевых Low ESR.

Двухканальный NCP4672 стабилизатор с формированием сигналов сброса

NCP4672 имеет два детектора для фиксации напряжения на входе и выходе стабилизатора, что позволяет формировать требуемую последовательность подключения питания для микросхем, в которых используется несколько разных источников напряжения, например, для питания ядра и периферии.

На входах и выходах стабилизатора можно устанавливать недорогие керамические конденсаторы емкостью 0,1 и 4,7 мкФ.

Трехканальный CMOS LDO NCP4523 для питания ВЧ-модулей

Стабилизаторы серии NCP4523 являются многоканальными стабилизаторами с различными напряжениями на выходе и высокой нагрузочной способностью. Токи выходов: 200; 100; 100 мА. Эта серия характеризуется низким уровнем шума выходных сигналов, низким собственным потреблением, высокой степенью подавления импульсных помех. Каждый из трех отдельных модулей содержит свой источник опорного напряжения и резистивный делитель для установки уровня выходного напряжения. Каждый канал имеет защиту от короткого замыкания на выходе и вход разрешения. Установка резистивных делителей производится лазерной подгонкой в процессе производства.

– питание сотовых телефонов GSM, CDMA и систем персональной связи;

– питание видеокамер, цифровых камер;

– питание батарейных приборов.

Заводская установка резистивного делителя определяется кодом заказа. В таблице 1 указаны маркировки для трех стандартных версий микросхемы.

Таблица 1. Номиналы выходных напряжений и маркировка стандартных версий NCP4523

Источник