Меню

Как выбрать мощность редуктора



Как выбрать мотор-редуктор: руководство инженера

редуктор с шаговым двигателем

Как подобрать мотор-редуктор инженеру-разработчику

123.jpg

Угловые редукторы помогают сократить время простоя и количество запасных частей для более высокой производительности

Изготовление редукторов под конкретную задачу становится все более распространенной услугой на рынке, главным образом, потому что изготовление таких редукторов стало проще, чем когда-либо.

Однако это не означает, что упростился этап разработки. Тем не менее, современное производство позволяет поставщикам изготавливать редукторы и их компоненты непосредственно под условия конкретного технического задания.

Новые подходы в предоставлении технической поддержки, а также новые станки, программное обеспечение для автоматизации и проектирования дают возможность ОЕМ-производителям и конечным пользователям получать недорогие редукторы даже в относительно небольших количествах.

При привлечении помощи от консультанта или производителя инженер с большей вероятностью получит редуктор, который будет соответствовать спецификации после того как правильно ответит на следующие вопросы:

    Какова будет скорость вращения и мощность на входном валу?

Какая конечная выходная скорость и крутящий момент? Эти параметры определяют передаточное отношение редуктора.

Какие условия эксплуатации? Сколько часов в день будет работать редуктор? Должен ли он выдерживать ударные нагрузки и вибрацию?

Насколько далеко вынесена нагрузка на валу? Учитывайте, что конические зубчатые передачи обычно не приспособлены для установки на нескольких опорах из-за того что их валы пересекаются…и поэтому одна или несколько шестеренок оказываются вынесенными относительно точки упора. Это может создавать дополнительную нагрузку на вал, который деформируется и положение шестеренок смещается, ухудшая контакт зубьев и уменьшая срок службы. Одним из возможных решений является использование широких подшипников на каждой стороне шестерни.

Должен ли быть редуктор оснащен обычным или полым выходным и входным валами?

Как будет расположен редуктор? Например, будет ли это передача движения с поворотом на 90°, должен ли червяк быть установленным над или под колесом? Будут ли валы выходить из корпуса редуктора горизонтально или вертикально?

  • Требуется ли коррозионностойкая окраска и исполнение корпуса и валов из нержавеющей стали.
  • Коэффициент условий эксплуатаций. Отправной точкой в выборе редуктора является определение коэффициента условий эксплуатации. Опираясь на значение данного коэффициента можно рассчитать тип входного вала, количество рабочих часов в день и любые ударные и вибрационные нагрузки, связанные с применением редуктора. Задачи, сопровождающиеся нерегулярными ударными нагрузками (например, задачи связанные с дроблением материалов), как правило, требуют более высокий коэффициент условий эксплуатации. Аналогичным образом редуктор, работающий с перерывами, требует для определения параметров меньшего коэффициента условий эксплуатации, чем редуктор, работающий 24 часа в сутки без перерыва.

    Класс обслуживания. После того как инженер определился с коэффициентом условий эксплуатации, его следующий шаг – определение класса обслуживания. Например, редуктор, соединенный с простым электродвигателем переменного тока, который приводит в движение равномерно нагруженный конвейер с постоянной скоростью 20 часов в день, может иметь класс обслуживания 2.

    124.jpg

    Преимущественной задачей инженера-разработчика является разработка и расчет конструкции редукторов и электродвигателей. Такие комплекты оборудования получают номер в виде римской цифры соответствующего класса обслуживания (например – I, II или III) который равен классу обслуживания для дискретного редуктора (в данном случае – 1,0, 1,41 или 2,0).

    Такую информацию, как правило, предоставляют сами производители редукторов в виде диаграмм в которых перечислены классы обслуживания. Для правильного использования этих диаграмм инженер-проектировщик должен знать входную мощность, тип использования, необходимый коэффициент редукции. Например, предположим, что для решения задачи необходим двигатель мощностью 2 л.с. и редуктор с коэффициентом редукции 15:1. Для правильного определения класса обслуживания найдите на диаграмме точку, в которой пересекается колонка с мощностью 15 л.с. и ряд с коэффициентом редукции 15:1 – в данной точке находится редуктор с размером 726. В соответствии с системой внутренней индексации номер 726 определяет редуктор имеющем центральное расстояние 2,62. Такие диаграммы также работают и в обратном направлении, и инженер может определить крутящий момент и скорость вращения у редуктора заданного размера.

    154.jpg

    Данная диаграмма показывает значения для выходного вала двигателя (с фланцем) или непосредственного соединения (без фланца). Использование диаграммы позволяет инженеру проектировщику проверить, что 726 редуктор с коэффициентов редукции 15:1 будет иметь скорость вращения выходного вала 116,7 об/мин и крутящий момент 112 Нм, при условии, что на входном валу редуктора установлен двигатель мощностью 2 л.с.

    Читайте также:  Один децибел по мощности

    Вынос нагрузки на валу. После того как инженер проектировщик выбрал размер редуктора, с помощью каталога или сайта производителя, на котором как правило, также перечислены и предельные значения для максимального выноса нагрузки на валу. Совет: если вынос нагрузки в задаче превышает допустимое значение, увеличивайте размер редуктора, чтобы он мог выдерживать вынесенную нагрузку.

    Монтаж. На данном этапе разработчик уже определил размер редуктора и его основные возможности. Следующий шаг – выбор типа монтажа. Компании производители редукторов предоставляют множество вариантов для монтажа своих редукторов разных размеров. Самый распространенный тип монтажного приспособления – фланцевый с полым валом для двигателя с подковообразной рамой и выходным валом, направленным в левую сторону. В тоже время существует множество других вариантов. Возможны такие варианты как установочные ножки для изменения высоты установки, полые входные и выходные валы. Все производители редукторов перечисляют все возможные варианты установки своих редукторов в каталогах и веб-сайтах.

    Смазка, уплотнения и интеграция двигателя. После того как завершено определение размера и конфигурации редуктора остается только определить некоторые финальные параметрами. Большинство производителей поставляют редукторы уже наполненные смазкой. Но, все же, большинство редукторов поставляются без смазки, чтобы пользователи имели возможность воспользоваться сайтом компании производителя выбрать смазочный материал, подходящий для условий эксплуатации на площадке клиента. Для конструкций, в которых присутствует вертикальный вал, некоторые производители рекомендуют использовать два комплекта уплотнений. Наконец, множество редукторов в конечном итоге монтируются на двигателе пи помощи подковообразной рамы, многие компании производители предлагают на этапе заказа произвести интеграцию двигателя и редуктора в единую конструкцию.

    Лучшим подходом при выборе редуктора это тесное общение с консультантами и использование специально изготовленных редукторов и сборок редуктор-двигатель если того требует техническое задание, некоторые такие комбинации могут быть достаточно эффективными. Фактически, непрерывное и тесное взаимодействие с представителями компании-производителя при обсуждении параметров предварительного проектирования мотор-редуктора гарантирует, что полученная комбинация двигателя и редуктора будет работать в соответствии со спецификациями полученными из расчетов и испытаний выполненных заводом изготовителем. Также стоит проверять расчеты выполненные компанией-производителем для того, чтобы вовремя определить расхождения и предотвратить потенциальные проблемы которые может вызвать мотор-редуктор на площадке заказчика.

    Запомните, что редуктор, изготовленный под заказ и редуктор, выбранный из стандартного ряда, не являются взаимоисключающими решениями. Там где использование применением редукторов изготовленных под заказ не оправданно (например, требуемое количество недостаточно велико) стоит рассмотреть возможность работы с производителями, которые продают редукторы, построенные на основе стандартных модульных компонентов. В обратном случае, для приобретения небольших партий, полностью заказных редукторов, обратите внимание на производителей, которые используют новейшие САПР, САМ и станки ЧПУ для оптимизации обработки и снижения стоимости изделия.

    Еще один, последний, совет: после того как вы выбрали мотор-редуктор и установили его, проведите несколько тестовых прогонов в условиях производства, с типичными рабочими сценариями. Если работа мотор-редуктора сопровождается необычно высокой температурой, шумом или повышенной нагрузки, необходимо повторить процесс выбора редуктора или обратится за консультацией к производителю.

    Источник

    Статья — как выбрать редуктор, мотор-редуктор

    Крутящий момент на выходе редуктора

    1 Крутящий момент на выходном валу редуктора M2 [Нм]
    Крутящим моментом на выходном валу редуктора называется вращающий момент, подводимый к выходному валу мотор-редуктора, при установленной номинальной мощности Pn, коэффициенте безопасности S, и расчетном сроке службы 10000 часов, с учетом КПД редуктора.
    2 Номинальный крутящий момент редуктора Mn2 [Нм]
    Номинальным крутящим моментом редуктора называется максимальный крутящий момент, на безопасную передачу которого рассчитан редуктор, исходя из следующих величин:
    . коэффициент безопасности S=1
    . срок службы 10000 часов.
    Величины Mn2 рассчитываются в соответствии со следующими стандартами:
    ISO DP 6336 для шестерен;
    ISO 281 для подшипников.

    3 Максимальный вращающий момент M2max [Нм]
    Максимальным вращающим моментом называется наибольший крутящий момент, выдерживаемый редуктором в условиях статической или неоднородной нагрузки с частыми пусками и остановками (это величина понимается как мгновенная пиковая нагрузка при работе редуктора или пусковой крутящий момент под нагрузкой).
    4 Необходимый крутящий момент Mr2 [Нм]
    Значение крутящего момента, соответствующее необходимым требованиям потребителя. Данная величина всегда должна быть меньше или равна номинальному значению выходного крутящего момента Mn2 выбранного редуктора.
    5 Расчетный крутящий момент M c2 [Нм]
    Значение крутящего момента, которым необходимо руководствоваться при выборе редуктора с учетом требуемого крутящего момента Mr2 и эксплуатационного коэффициента fs, вычисляется по формуле:

    Читайте также:  Тип пласта по мощности

    Мощность

    1 Номинальная входная мощность Pn1 [кВт]
    Значение данной величины, приведенное в таблицах выбора редукторов, соответствует допустимой входной мощности, передаваемой на входной вал редуктора при скорости n1, коэффициенте безопасности S=1 и расчетном сроке службы редуктора 10000 ч.

    2 Выходная мощность P2 [кВт]
    Полезная мощность, передаваемая на выходной вал редуктора, вычисляется по следующим формулам:

    Значения динамического КПД редукторов указаны в таблице (A2)

    Предельная термическая мощность Pt [кВт]

    Данная величина равна предельному значению передаваемой редуктором механической мощности в условиях непрерывной работы при температуре окружающей среды 20°C без повреждения узлов и деталей редуктора. При температуре окружающей среды, отличной от 20°C, и прерывистом режиме работы значение Pt корректируется с учетом тепловых коэффициентов ft и коэффициентов скорости, приведенных в таблице (A1). Необходимо обеспечить выполнение следующего условия:

    Относительная продолжительность включения (I)% равна процентному отношению времени работы под нагрузкой tf к сумме времени работы под нагрузкой и времени покоя tr:

    Коэффициент полезного действия (КПД)

    1 Динамический КПД [ηd]
    Динамический КПД представляет собой отношение мощности, получаемой на выходном валу P2, к мощности, приложенной к входному валу P1.

    Справочные значения КПД указаны в следующей таблице: (A2)

    Передаточное число [ i ]

    Характеристика, присущая каждому редуктору, равная отношению скорости вращения на входе n1 к скорости вращения на выходе n2:

    Скорость вращения

    1 Скорость на входе n1 [мин -1]
    Скорость вращения, подведенная к входному валу редуктора. В случае прямого подсоединения к электродвигателю данное значение равно выходной скорости электродвигателя; в случае подсоединения через другие элементы привода для получения входной скорости редуктора скорость двигателя следует разделить на передаточное число подводящего привода. В этих случаях рекомендуется подводить к редуктору скорость вращения ниже 1400 об/мин. Не допускается превышение значений входной скорости редукторов, указанных в таблице.

    2 Скорость на выходе n2 [мин-1]
    Выходная скорость n2 зависит от входной скорости n1 и передаточного числа i; вычисляется по формуле:

    Эксплуатационный коэффициент fs

    Эксплуатационный коэффициент является количественным показателем тяжести предполагаемых условий эксплуатации редуктора с приблизительным учетом продолжительности ежедневного цикла работы, изменений нагрузки и возможных перегрузок, связанных с особенностями конкретных условий эксплуатации изделия. Приблизительные значения эксплуатационного коэффициента даны в таблице (A3) ниже:

    Коэффициент безопасности [S]

    Значение коэффициента равно отношению номинальной мощности редуктора к реальной мощности электродвигателя, подсоединенного к редуктору:

    Классификация редукторов в зависимости от расположения осей входного и выходного валов в пространстве.

    Классификация редукторов в зависимости от способа крепления.

    Конструктивные исполнения по способу монтажа.

    Условные изображения и цифровые обозначения конструктивных исполнений редукторов и мотор-редукторов общемашиностроительного применения: (изделий) по способу монтажа установлены ГОСТ 30164-94.
    В зависимости от конструкции редукторы и мотор-редукторы разбиты на следующие группы:

    а) соосные;
    б) с параллельными осями;
    в) с пересекающимися осями;
    г) со скрещивающимися осями.

    К группе а) отнесены и изделия с параллельными осями, у которых концы входного и выходного валов направлены в противоположенные стороны, а их межосевое расстояние составляет не более 80мм.
    К группам б) и в) отнесены также вариаторы и вариаторные приводы. Условные изображения и цифровые обозначения конструктивных исполнений по способу монтажа характеризуют конструктивные исполнения корпусов, а также расположение в пространстве поверхностей крепления валов или осей валов.

    Условное обозначение изделий группы а) состоит из трех цифр:

    Первая — конструктивное исполнение корпуса (1 – на лапах, 2 – с фланцем);
    Вторая — расположение поверхности крепления (1 — пол, 2 – потолок, 3 – стена);
    Третья – расположение конца выходного вала (1 – горизонтальный влево, 2 — горизонтальный вправо, 3 – вертикальный вниз, 4 — вертикальный верх).

    Читайте также:  Формула амплитудного значения мощности

    Условное обозначение изделий группы а) состоит из трех цифр:
    первая — конструктивное исполнение корпуса (1 — на лапах; 2 — с фланцем); вторая — расположение поверхности крепления (1 — пол; 2 — потолок; 3 — стена); третья — расположение конца выходного вала (1 — горизонтальный влево; 2 — горизонтальный вправо; 3 — вертикальный вниз; 4 — вертикальный вверх).

    Условное обозначение изделий групп б) и в) состоит из четырех цифр:
    первая — конструктивное исполнение корпуса (1 — на лапах; 2 — с фланцем; 3 — навесное; 4 — насадное); вторая — взаимное расположение поверхности крепления и осей валов для группы б): 1 — параллельно осям валов; 2 — перпендикулярно осям валов; для группы в): 1 — параллельно осям валов; 2 — перпендикулярно оси выходного вала; 3 — перпендикулярно оси входного вала); третья — расположение поверхности крепления в пространстве (1 — пол; 2 — потолок; 3 — стена левая, передняя, задняя; 4 — стена правая, передняя, задняя);

    четвертая — расположение валов в пространстве для группы б): 0 — валы горизонтальные в горизонтальной плоскости; 1 — валы горизонтальные в вертикальной плоскости; 2 — валы вертикальные; для группы в): 0 — валы горизонтальные; 1 — выходной вал вертикальный; 2 — входной вал вертикальный).
    Условное обозначение изделий группы г) состоит из четырех цифр:
    первая — конструктивное исполнение корпуса (1 — на лапах; 2 — с фланцем; 3 — навесное; 4 — насадное);
    вторая — взаимное расположение поверхности крепления и осей валов (1 — параллельно осям валов, со стороны червяка; 2 — параллельно осям валов, со стороны колеса; 3, 4 — перпендикулярно оси колеса; 5, 6 — перпендикулярно оси червяка);
    третья — расположение валов в пространстве (1 — валы горизонтальные; 2 — выходной вал вертикальный: 3 — входной вал вертикальный);
    четвертая — взаимное расположение червячной пары в пространстве (0 — червяк под колесом; 1 — червяк над колесом: 2 — червяк справа от колеса; 3 — червяк слева от колеса).
    Изделия навесного исполнения устанавливают полым выходным валом, а корпус фиксируют в одной точке от проворота реактивным моментом. Изделия насадного исполнения устанавливают полым выходным валом, а корпус крепят неподвижно в нескольких точках.
    В мотор-редукторах на изображении конструктивного исполнения по способу монтажа должно быть дополнительное упрощенное изображение контура двигателя по ГОСТ 20373.
    Примеры условных обозначений и изображений:
    121 — соосный редуктор, конструктивное исполнение корпуса на лапах, крепление к потолку, валы горизонтальные, выходной вал слева (рис. 1, а);
    2231 — редуктор с параллельными осями, исполнение корпуса с фланцем, поверхность крепления перпендикулярна осям валов, крепление к левой стене, валы горизонтальные в вертикальной плоскости (рис. 1, б);
    3120 — редуктор с пересекающимися осями, исполнение корпуса навесное, поверхность крепления параллельна осям валов, крепление к потолку, валы горизонтальные (рис. 1, в);
    4323 — редуктор со скрещивающимися осями, исполнение корпуса насадное, поверхность крепления перпендикулярна оси колеса, выходной вал вертикальный, червяк слева от колеса (рис. 1, г). Символом LLLL обозначена точка фиксации изделия от проворота реактивным моментом и крепление полого выходного вала на валу рабочей машины.

    ВАРИАНТЫ СБОРКИ.

    В соответствии с ГОСТ 20373-94 редукторы и мотор-редукторы выполняют по одному из стандартных вариантов сборки, которые отличаются по количеству, взаимному расположению, форме и размерам выходных концов валов. Условные изображения и обозначения вариантов сборки по ГОСТ 20373 являются составной частью условных обозначений редукторов и мотор-редукторов общемашиностроительного применения, предназначенных для привода машин, механизмов и оборудования. Стандарт не распространяется на соосные зубчатые редукторы и мотор-редукторы и является рекомендуемым для специальных. Условные изображения и цифровые обозначения вариантов сборки редукторов и мотор-редукторов характеризуют взаимное расположение выходных концов валов и их число.

    Условные изображения и цифровые обозначения вариантов сборки первой ступени относительно второй червячных и цилиндрическо-червячных двухступенчатых редукторов и мотор-редукторов должны соответствовать приведенным в табл.

    Источник