Меню

Как рассчитать баланс мощностей с источником тока



Основы электротехники и электроники: Курс лекций , страница 6

Произведем проверку расчета токов с помощью баланса мощности. При расчете мощности источников токи мы должны направить так, чтобы они совпадали с направлением ЭДС (См. Рис. 8.2). Итак, мощность источников:

С учетом вычислительных погрешностей .

Общий вид системы уравнений метода контурных токов:

где называется собственным или полным сопротивлением контура. Оно равно сумме всех сопротивлений контура и всегда положительно.

называется сопротивлением смежной ветви. Если контурные токи в смежной ветви встречны, . Если контурные токи в смежной ветви одного направления, . И при этом всегда справедливо равенство .

называется контурной ЭДС. Контурная ЭДС равна алгебраической сумме отдельных ЭДС контура.

Главный определитель системы (8.7) имеет вид:

Он всегда симметричен относительно главной диагонали.

Чтобы решить систему (8.7) методом Крамера, необходимо найти алгебраические дополнения определителя (8.8).

Алгебраическое дополнение Δkm определителя (8.8) можно получить путем вычеркивания из определителя (8.8) k-го столбца и m-ой строки и умножения полученного определителя на (‑1) k+ m

Решая систему (8.7) в общем виде, получим для любого k-го контурного тока выражение:

Выражение (8.9) имеет важное теоретическое значение и будет использоваться в дальнейшем при рассмотрении методов расчета электрических цепей.

Особенности метода контурных токов при наличии в цепи источников тока

При наличии в схеме источника тока записать уравнение по второму закону Кирхгофа для контура с источником нельзя. Однако, расчетные контуры можно выбрать так, чтобы каждый источник тока входил только в один независимый контур. Тогда реальный ток источника будет равен контурному току, и, следовательно, этот контурный ток уже будет известен. Для него не надо записывать уравнения по второму закону Кирхгофа. Но он будет входить в уравнения для других контурных токов. При формировании системы уравнений его необходимо перенести в правую часть системы как известную величину.

В схеме четыре независимых контура. Выбираем контуры так, чтобы каждый источник тока входил только в один контур и ток источника был равен контурному. В данном случае:

Составляем систему уравнений для контурных токов I33 и I44:

Преобразуем систему (Пр. 8.2.1), перенеся в правую часть слагаемые, содержащие известные величины:

Подставляем в систему (Пр. 8.2.2) числа:

Систему (Пр. 8.2.3) решаем методом Крамера:

Вычисляем реальные токи через контурные (См. Рис. 8.3):

Произведем проверку расчета токов с помощью баланса мощности. Токи в ветвях с ЭДС направим так, чтобы они совпадали с направлением ЭДС, напряжения на выводах источников тока направим противоположно току источников (Рис. 8.4).

Напряжения на выводах источников тока:

Мощность источников равна мощности потребителей:

9. МЕТОД НАЛОЖЕНИЯ

При рациональном выборе контуров всегда можно добиться того, чтобы ветвь с искомым током входила только в один независимый контур. Тогда реальный ток будет совпадать с контурным, и для него будет справедливо соотношение (8.9):

Каждую из контурных ЭДС можно выразить через ЭДС ветвей E1, E2, E3

Тогда соотношение (8.9) предстанет в виде:

Очевидно, что в выражении (9.1) каждое слагаемое представляет собой часть полного тока, обусловленную лишь одной ЭДС.

Отсюда следует важный в теоретическом отношении вывод: ток в произвольной ветви равен алгебраической сумме частичных токов, порождаемых каждым из источников в отдельности.

На этом принципе основан расчетный метод, называемый методом наложения.

Алгоритм расчета цепи методом наложения

Поочередно рассчитываются токи, возникающие от действия каждого источника в отдельности. При этом остальные источники мысленно удаляются из цепи, но сохраняются их внутренние сопротивления. Истинный ток определяется алгебраической суммой частичных токов.

Найти неизвестные токи методом наложения (Рис. 9.1).

В схеме два источника. Разбиваем исходную схему на две: схему с источником тока и схему с источником ЭДС.

Находим составляющие токов, создаваемых источником тока. Для этого удаляем из схемы источник ЭДС. Так как внутреннее сопротивление источника ЭДС равно нулю, на его место (между точками c и d) ставим закоротку (Рис. 9.2).

Читайте также:  Переключатели мощности для электроплит дарина

Не вызывает сомнений, что ток равен току источника:

Для определения токов и воспользуемся так называемым правилом параллельного разброса, которое состоит в следующем. Пусть в узел a втекает известный ток I (Рис. 9.3). Необходимо найти токи и .

Запишем эквивалентное сопротивление двух параллельных ветвей:

Теперь, чтобы найти ток , протекающий через резистор (см. Рис. 9.3), в формулу эквивалентного сопротивления (Пр. 9.1.1) вместо в числителе ставим ток I, втекающий в узел a:

Аналогично находится ток через резистор :

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Баланс мощностей в электрической цепи постоянного тока

Баланс мощностей в электрической цепи означает, что мощность, которую выделяют все источники энергии, равна мощности, которую потребляют в этой же цепи все приемники энергии:

где – мощность i-го источника ЭДС или тока, Вт; – мощность, выделяемая в j-м сопротивлении, Вт.

Очевидно, что баланс мощностей следует из закона сохранения энергии.

Читайте также:  Наименьшую потребляемую мощность при одинаковой силе света имеют

Запишем для анализируемой цепи рис. 2.15 сумму мощностей, выделяемых всеми источниками энергии. При этом мощности, выделяемые источниками ЭДС и тока, будем считать положительными, если ток в ветви, где установлен источник ЭДС или тока, совпадает с направлением тока внутри источника (со стрелкой в обозначении источника ЭДС или тока), и отрицательными, если направление тока в ветви противоположно направлению тока в источнике. Тогда, составив соответствующее уравнение для вычисления суммарной мощности, отдаваемой источниками ЭДС и тока в анализируемую цепь и подставив в него численные значения, получим суммарную мощность источников:

при этом токи ветвей должны подставляться в уравнение (2.70) со своим знаком, который получился при их расчете.

Суммарная мощность, рассеиваемая в цепи сопротивлениями (приемниками энергии), для той же цепи рис. 2.15, может быть найдена так:

В результате расчета (2.70) – выделяемая источниками мощность, и (2.71) – потребляемая сопротивлениями мощность в цепи – должны быть одинаковы.

Потенциальная диаграмма электрической цепи

Постоянного тока

Потенциальная диаграмма контура электрической цепи постоянного тока – это графическое изображение второго закона Кирхгофа, в котором вместо падений напряжений записаны потенциалы узлов электрической цепи. Она показывает суммарное значение потенциала и суммарное сопротивление в данной точке цепи того контура, для которого построена диаграмма, считая от опорного узла, потенциал которого принят за нулевой. Иными словами, потенциальная диаграмма показывает распределение потенциалов и сопротивлений в том контуре цепи, для которого она построена.

Графически эта диаграмма представляет собой ломаную линию, изображенную в декартовой системе координат, горизонтальной осью которой (осью абсцисс) является ось сопротивлений , а вертикальной осью (осью ординат) – ось потенциалов .

Процесс построения потенциальной диаграммы электрической цепи рассмотрим для той же, что и ранее, электрической цепи, показанной на рис. 2.3, и модифицированной для удобства построения потенциальной диаграммы так, как показано на рис. 2.15.

Поскольку для построения потенциальной диаграммы требуется знание численных значений токов ветвей и сопротивлений ветвей, приведем эти численные значения для цепи рис. 2.15 при условии, что исходные данные для расчета этой цепи таковы: Ом, Ом, Ом, Ом, Ом, Ом; величины источников ЭДС: В, В; величины источников тока: А, А. Значения токов в ветвях цепи, рассчитанные прямым применением законов Кирхгофа (сам расчет здесь не приводится), таковы: [А]; [А]; [А]; [А]; [А]; [А].

Построение потенциальной диаграммы начнем с выбора контура, для которого эта диаграмма будет составляться. На наш взгляд, наиболее информативно будет построить потенциальную диаграмму для контура d-b-m-a-c-s-d, так как в этом контуре содержатся все источники ЭДС и источники тока анализируемой цепи и при таком обходе на потенциальной диаграмме будут показаны потенциалы всех узлов анализируемой схемы. Далее произведем выбор опорного узла, потенциал которого примем за ноль. Есть смысл взять за опорный узел d, как и ранее при расчетах анализируемой цепи. Потенциал этого узла положим равным нулю, как и ранее (2.44).

Определим численные значения потенциалов узлов и точек анализируемой схемы, находящихся на пути обхода выбранного нами контура d-b-m-a-c-s-d. Поскольку потенциал узла d равен нулю (2.44), то потенциал узла b определится так:

Знак «плюс» при произведении означает, что потенциал узла b повышается при переходе от узла d анализируемой схемы к узлу b (см. полярность падения напряжения на сопротивлении от тока на схеме рис. 2.15).

Следующим определим потенциал точки m анализируемой схемы:

Знаки при произведениях и соответствуют полярностям, показанным на схеме рис. 2.15.

Следующим за точкой m анализируемой схемы идет узел a. Его потенциал равен:

Рис. 2.15. Эквивалентная схема анализируемой электрической цепи для построения потенциальной диаграммы

Далее определим потенциал узла c, значение которого составит:

Потенциал точки s, следующей за узлом c по выбранному нами обходу, равен:

Обойдя таким образом весь контур d-b-m-a-c-s-d, мы возвращаемся в узел d. При этом потенциал узла d должен стать равным нулю. В самом деле, так оно и происходит, так как при подходе из узла c к узлу d, потенциал последнего станет равен:

Читайте также:  Блок питания iphone мощность

После расчета численных значений потенциалов для контура d-b-m-a-c-s-d можно построить саму потенциальную диаграмму. Эта диаграмма показана на рис. 2.16.

Техника построения потенциальной диаграммы такова. На осях декартовой системы координат откладывают значения потенциалов и сопротивлений для контура цепи (схемы), который был ранее выбран для построения потенциальной диаграммы. В нашем примере, рис. 2.15, это контур d-b-m-a-c-s-d. Значения заранее рассчитанных величин потенциалов для каждой из точек этого контура откладывают на вертикальной оси (оси ординат) в положительную или отрицательную область значений, в зависимости от знака потенциала, полученного ранее при расчете. В нашем примере это будут потенциалы , , , , , и вновь точек d-b-m-a-c-s-d, соответственно. Порядок следования значений потенциалов в потенциальной диаграмме соответствует их порядку при расчете значений потенциалов. В анализируемой нами цепи рис. 2.15, этот порядок , , , , , , соответствует обходу контура d-b-m-a-c-s-d. Значения сопротивлений откладываются по горизонтальной оси (оси абсцисс) декартовой системы координат. За нулевое (исходное) значение сопротивления в потенциальной диаграмме принимается значение в опорном узле; в нашем примере рис. 2.15 это значение сопротивления в узле d. Далее, по мере обхода контура цепи, который выбран для построения потенциальной диаграммы (в нашем примере это контур d-b-m-a-c-s-d), значения сопротивлений в каждой последующей точке прибавляются к значениям сопротивлений в предыдущей точке.

Таким образом, сопротивление в каждой точке потенциальной диаграммы контура оказывается суммарным для этой точки, начиная с опорного узла, где значение сопротивления принято за ноль. Если при переходе из одной точки контура в другую сопротивления в схеме цепи нет, то к предыдущему значению сопротивления прибавляется ноль (это имеет место при прохождении источника ЭДС с нулевым внутренним сопротивлением).

Рис. 2.8.2 Потенциальная диаграмма контура d-b-m-a-c-s-d исследуемой цепи

В нашем примере значения сопротивлений в точках потенциальной диаграммы контура d-b-m-a-c-s-d составят:

Таким образом, при построении потенциальной диаграммы контура электрической цепи по вертикальной оси декартовой системы координат откладывают потенциалы узлов по мере их упоминания при обходе контура, а по горизонтальной оси – нарастающим итогом сопротивления также по мере их упоминания при таком обходе. Используют потенциальную диаграмму цепи для наглядного визуального представления распределения потенциалов и соответствующих им сопротивлений по тому или иному контуру электрической цепи.

Библиографический список

1. Основы теории цепей. Методические указания и контрольные задания для студентов радиотехнического факультета спец. 0701 “Радиотехника”.-Сост. Ю.А.Мантейфельд, А.Д.Суслов. М.: МИРЭА.-1980.-48 с.

2. Основы теории цепей. Методические указания по выполнению расчетно-графических заданий №1-2 для студентов радиотехнического факультета. Сост. В.И.Вепринцев. Красноярск: Изд-во КГТУ, 2000. 64 с.

3. Шебес, М.Р., Каблукова, М.В. Задачник по теории линейных электрических цепей: Учеб. пособ. для электротехнич., радиотехнич. Спец. вузов.-4-е изд. перераб. и доп.-М.: Высш. шк., 1990.-544 с.: ил.

4. Основы теории цепей: учебник для вузов / Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. – 5-е изд., перераб. – М.: Энергоатомиздат, 1989. – 528 с.

5. Теория линейных электрических цепей: учебник для вузов / Б.П.Афанасьев, О.Е.Гольдин, И.Г.Кляцкин, Г.Я.Пинес. – М.: Высш. шк., 1973. – 592 с.

Оглавление

1. ЗАДАНИЕ И ВЫБОР ВАРИАНТА ДЛЯ ЕГО ВЫПОЛНЕНИЯ.. 4

2. РАСЧЕТ ВЕЛИЧИН ТОКОВ НЕПОСРЕДСТВЕННЫМ ПРИМЕНЕНИЕМ ЗАКОНОВ КИРХГОФА, МЕТОДАМИ КОНТУРНЫХ ТОКОВ, УЗЛОВЫХ ПОТЕНЦИАЛОВ И МЕТОДОМ ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА.. 9

2.2. Анализ (расчет) сложных электрических цепей. 19

методом контурных токов. 19

2.6.3 Анализ (расчет) сложных электрических цепей. 25

методом узловых потенциалов. 25

2.6.4 Анализ (расчет) сложных электрических цепей. 31

методом эквивалентного генератора. 31

2.5. Баланс мощностей в электрической цепи постоянного тока. 40

2.6 Потенциальная диаграмма электрической цепи. 41

постоянного тока. 41

Библиографический список. 47

Оглавление. 48

Дата добавления: 2018-02-15 ; просмотров: 4946 ; Мы поможем в написании вашей работы!

Источник

Как рассчитать баланс мощностей с источником тока



Баланс мощностей в электрической цепи постоянного тока

Баланс мощностей в электрической цепи означает, что мощность, которую выделяют все источники энергии, равна мощности, которую потребляют в этой же цепи все приемники энергии:

где – мощность i-го источника ЭДС или тока, Вт; – мощность, выделяемая в j-м сопротивлении, Вт.

Очевидно, что баланс мощностей следует из закона сохранения энергии.

Запишем для анализируемой цепи рис. 2.15 сумму мощностей, выделяемых всеми источниками энергии. При этом мощности, выделяемые источниками ЭДС и тока, будем считать положительными, если ток в ветви, где установлен источник ЭДС или тока, совпадает с направлением тока внутри источника (со стрелкой в обозначении источника ЭДС или тока), и отрицательными, если направление тока в ветви противоположно направлению тока в источнике. Тогда, составив соответствующее уравнение для вычисления суммарной мощности, отдаваемой источниками ЭДС и тока в анализируемую цепь и подставив в него численные значения, получим суммарную мощность источников:

при этом токи ветвей должны подставляться в уравнение (2.70) со своим знаком, который получился при их расчете.

Суммарная мощность, рассеиваемая в цепи сопротивлениями (приемниками энергии), для той же цепи рис. 2.15, может быть найдена так:

В результате расчета (2.70) – выделяемая источниками мощность, и (2.71) – потребляемая сопротивлениями мощность в цепи – должны быть одинаковы.

Потенциальная диаграмма электрической цепи

Постоянного тока

Потенциальная диаграмма контура электрической цепи постоянного тока – это графическое изображение второго закона Кирхгофа, в котором вместо падений напряжений записаны потенциалы узлов электрической цепи. Она показывает суммарное значение потенциала и суммарное сопротивление в данной точке цепи того контура, для которого построена диаграмма, считая от опорного узла, потенциал которого принят за нулевой. Иными словами, потенциальная диаграмма показывает распределение потенциалов и сопротивлений в том контуре цепи, для которого она построена.

Графически эта диаграмма представляет собой ломаную линию, изображенную в декартовой системе координат, горизонтальной осью которой (осью абсцисс) является ось сопротивлений , а вертикальной осью (осью ординат) – ось потенциалов .

Процесс построения потенциальной диаграммы электрической цепи рассмотрим для той же, что и ранее, электрической цепи, показанной на рис. 2.3, и модифицированной для удобства построения потенциальной диаграммы так, как показано на рис. 2.15.

Поскольку для построения потенциальной диаграммы требуется знание численных значений токов ветвей и сопротивлений ветвей, приведем эти численные значения для цепи рис. 2.15 при условии, что исходные данные для расчета этой цепи таковы: Ом, Ом, Ом, Ом, Ом, Ом; величины источников ЭДС: В, В; величины источников тока: А, А. Значения токов в ветвях цепи, рассчитанные прямым применением законов Кирхгофа (сам расчет здесь не приводится), таковы: [А]; [А]; [А]; [А]; [А]; [А].

Построение потенциальной диаграммы начнем с выбора контура, для которого эта диаграмма будет составляться. На наш взгляд, наиболее информативно будет построить потенциальную диаграмму для контура d-b-m-a-c-s-d, так как в этом контуре содержатся все источники ЭДС и источники тока анализируемой цепи и при таком обходе на потенциальной диаграмме будут показаны потенциалы всех узлов анализируемой схемы. Далее произведем выбор опорного узла, потенциал которого примем за ноль. Есть смысл взять за опорный узел d, как и ранее при расчетах анализируемой цепи. Потенциал этого узла положим равным нулю, как и ранее (2.44).

Читайте также:  Как определять мощность алфавита

Определим численные значения потенциалов узлов и точек анализируемой схемы, находящихся на пути обхода выбранного нами контура d-b-m-a-c-s-d. Поскольку потенциал узла d равен нулю (2.44), то потенциал узла b определится так:

Знак «плюс» при произведении означает, что потенциал узла b повышается при переходе от узла d анализируемой схемы к узлу b (см. полярность падения напряжения на сопротивлении от тока на схеме рис. 2.15).

Следующим определим потенциал точки m анализируемой схемы:

Знаки при произведениях и соответствуют полярностям, показанным на схеме рис. 2.15.

Следующим за точкой m анализируемой схемы идет узел a. Его потенциал равен:

Рис. 2.15. Эквивалентная схема анализируемой электрической цепи для построения потенциальной диаграммы

Далее определим потенциал узла c, значение которого составит:

Потенциал точки s, следующей за узлом c по выбранному нами обходу, равен:

Обойдя таким образом весь контур d-b-m-a-c-s-d, мы возвращаемся в узел d. При этом потенциал узла d должен стать равным нулю. В самом деле, так оно и происходит, так как при подходе из узла c к узлу d, потенциал последнего станет равен:

После расчета численных значений потенциалов для контура d-b-m-a-c-s-d можно построить саму потенциальную диаграмму. Эта диаграмма показана на рис. 2.16.

Техника построения потенциальной диаграммы такова. На осях декартовой системы координат откладывают значения потенциалов и сопротивлений для контура цепи (схемы), который был ранее выбран для построения потенциальной диаграммы. В нашем примере, рис. 2.15, это контур d-b-m-a-c-s-d. Значения заранее рассчитанных величин потенциалов для каждой из точек этого контура откладывают на вертикальной оси (оси ординат) в положительную или отрицательную область значений, в зависимости от знака потенциала, полученного ранее при расчете. В нашем примере это будут потенциалы , , , , , и вновь точек d-b-m-a-c-s-d, соответственно. Порядок следования значений потенциалов в потенциальной диаграмме соответствует их порядку при расчете значений потенциалов. В анализируемой нами цепи рис. 2.15, этот порядок , , , , , , соответствует обходу контура d-b-m-a-c-s-d. Значения сопротивлений откладываются по горизонтальной оси (оси абсцисс) декартовой системы координат. За нулевое (исходное) значение сопротивления в потенциальной диаграмме принимается значение в опорном узле; в нашем примере рис. 2.15 это значение сопротивления в узле d. Далее, по мере обхода контура цепи, который выбран для построения потенциальной диаграммы (в нашем примере это контур d-b-m-a-c-s-d), значения сопротивлений в каждой последующей точке прибавляются к значениям сопротивлений в предыдущей точке.

Таким образом, сопротивление в каждой точке потенциальной диаграммы контура оказывается суммарным для этой точки, начиная с опорного узла, где значение сопротивления принято за ноль. Если при переходе из одной точки контура в другую сопротивления в схеме цепи нет, то к предыдущему значению сопротивления прибавляется ноль (это имеет место при прохождении источника ЭДС с нулевым внутренним сопротивлением).

Рис. 2.8.2 Потенциальная диаграмма контура d-b-m-a-c-s-d исследуемой цепи

В нашем примере значения сопротивлений в точках потенциальной диаграммы контура d-b-m-a-c-s-d составят:

Таким образом, при построении потенциальной диаграммы контура электрической цепи по вертикальной оси декартовой системы координат откладывают потенциалы узлов по мере их упоминания при обходе контура, а по горизонтальной оси – нарастающим итогом сопротивления также по мере их упоминания при таком обходе. Используют потенциальную диаграмму цепи для наглядного визуального представления распределения потенциалов и соответствующих им сопротивлений по тому или иному контуру электрической цепи.

Читайте также:  Мощность трехфазной цепи переменного тока при симметричной нагрузке

Библиографический список

1. Основы теории цепей. Методические указания и контрольные задания для студентов радиотехнического факультета спец. 0701 “Радиотехника”.-Сост. Ю.А.Мантейфельд, А.Д.Суслов. М.: МИРЭА.-1980.-48 с.

2. Основы теории цепей. Методические указания по выполнению расчетно-графических заданий №1-2 для студентов радиотехнического факультета. Сост. В.И.Вепринцев. Красноярск: Изд-во КГТУ, 2000. 64 с.

3. Шебес, М.Р., Каблукова, М.В. Задачник по теории линейных электрических цепей: Учеб. пособ. для электротехнич., радиотехнич. Спец. вузов.-4-е изд. перераб. и доп.-М.: Высш. шк., 1990.-544 с.: ил.

4. Основы теории цепей: учебник для вузов / Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. – 5-е изд., перераб. – М.: Энергоатомиздат, 1989. – 528 с.

5. Теория линейных электрических цепей: учебник для вузов / Б.П.Афанасьев, О.Е.Гольдин, И.Г.Кляцкин, Г.Я.Пинес. – М.: Высш. шк., 1973. – 592 с.

Оглавление

1. ЗАДАНИЕ И ВЫБОР ВАРИАНТА ДЛЯ ЕГО ВЫПОЛНЕНИЯ.. 4

2. РАСЧЕТ ВЕЛИЧИН ТОКОВ НЕПОСРЕДСТВЕННЫМ ПРИМЕНЕНИЕМ ЗАКОНОВ КИРХГОФА, МЕТОДАМИ КОНТУРНЫХ ТОКОВ, УЗЛОВЫХ ПОТЕНЦИАЛОВ И МЕТОДОМ ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА.. 9

2.2. Анализ (расчет) сложных электрических цепей. 19

методом контурных токов. 19

2.6.3 Анализ (расчет) сложных электрических цепей. 25

методом узловых потенциалов. 25

2.6.4 Анализ (расчет) сложных электрических цепей. 31

методом эквивалентного генератора. 31

2.5. Баланс мощностей в электрической цепи постоянного тока. 40

2.6 Потенциальная диаграмма электрической цепи. 41

постоянного тока. 41

Библиографический список. 47

Оглавление. 48

Дата добавления: 2018-02-15 ; просмотров: 4859 ; Мы поможем в написании вашей работы!

Источник

Основы электротехники и электроники: Курс лекций, страница 6

Произведем проверку расчета токов с помощью баланса мощности. При расчете мощности источников токи мы должны направить так, чтобы они совпадали с направлением ЭДС (См. Рис. 8.2). Итак, мощность источников:

С учетом вычислительных погрешностей .

Общий вид системы уравнений метода контурных токов:

где называется собственным или полным сопротивлением контура. Оно равно сумме всех сопротивлений контура и всегда положительно.

называется сопротивлением смежной ветви. Если контурные токи в смежной ветви встречны, . Если контурные токи в смежной ветви одного направления, . И при этом всегда справедливо равенство .

называется контурной ЭДС. Контурная ЭДС равна алгебраической сумме отдельных ЭДС контура.

Главный определитель системы (8.7) имеет вид:

Он всегда симметричен относительно главной диагонали.

Чтобы решить систему (8.7) методом Крамера, необходимо найти алгебраические дополнения определителя (8.8).

Алгебраическое дополнение Δ km определителя (8.8) можно получить путем вычеркивания из определителя (8.8) k-го столбца и m-ой строки и умножения полученного определителя на (‑1) k+ m

Решая систему (8.7) в общем виде, получим для любого k-го контурного тока выражение:

Выражение (8.9) имеет важное теоретическое значение и будет использоваться в дальнейшем при рассмотрении методов расчета электрических цепей.

Особенности метода контурных токов при наличии в цепи источников тока

При наличии в схеме источника тока записать уравнение по второму закону Кирхгофа для контура с источником нельзя. Однако, расчетные контуры можно выбрать так, чтобы каждый источник тока входил только в один независимый контур. Тогда реальный ток источника будет равен контурному току, и, следовательно, этот контурный ток уже будет известен. Для него не надо записывать уравнения по второму закону Кирхгофа. Но он будет входить в уравнения для других контурных токов. При формировании системы уравнений его необходимо перенести в правую часть системы как известную величину.

Читайте также:  Как соединить блоки питания для увеличения мощности 12 вольт

В схеме четыре независимых контура. Выбираем контуры так, чтобы каждый источник тока входил только в один контур и ток источника был равен контурному. В данном случае:

Составляем систему уравнений для контурных токов I 33 и I 44:

Преобразуем систему (Пр. 8.2.1), перенеся в правую часть слагаемые, содержащие известные величины:

Подставляем в систему (Пр. 8.2.2) числа:

Систему (Пр. 8.2.3) решаем методом Крамера:

Вычисляем реальные токи через контурные (См. Рис. 8.3):

Произведем проверку расчета токов с помощью баланса мощности. Токи в ветвях с ЭДС направим так, чтобы они совпадали с направлением ЭДС, напряжения на выводах источников тока направим противоположно току источников ( Рис. 8.4).

Напряжения на выводах источников тока:

Мощность источников равна мощности потребителей:

.

9. МЕТОД НАЛОЖЕНИЯ

При рациональном выборе контуров всегда можно добиться того, чтобы ветвь с искомым током входила только в один независимый контур. Тогда реальный ток будет совпадать с контурным, и для него будет справедливо соотношение (8.9):

Каждую из контурных ЭДС можно выразить через ЭДС ветвей E 1, E 2, E 3…

Тогда соотношение (8.9) предстанет в виде:

Очевидно, что в выражении (9.1) каждое слагаемое представляет собой часть полного тока, обусловленную лишь одной ЭДС.

Отсюда следует важный в теоретическом отношении вывод: ток в произвольной ветви равен алгебраической сумме частичных токов, порождаемых каждым из источников в отдельности.

На этом принципе основан расчетный метод, называемый методом наложения.

Алгоритм расчета цепи методом наложения

Поочередно рассчитываются токи, возникающие от действия каждого источника в отдельности. При этом остальные источники мысленно удаляются из цепи, но сохраняются их внутренние сопротивления. Истинный ток определяется алгебраической суммой частичных токов.

Найти неизвестные токи методом наложения ( Рис. 9.1).

В схеме два источника. Разбиваем исходную схему на две: схему с источником тока и схему с источником ЭДС.

Находим составляющие токов, создаваемых источником тока. Для этого удаляем из схемы источник ЭДС. Так как внутреннее сопротивление источника ЭДС равно нулю, на его место (между точками c и d) ставим закоротку ( Рис. 9.2).

Не вызывает сомнений, что ток равен току источника:

.

Для определения токов и воспользуемся так называемым правилом параллельного разброса, которое состоит в следующем. Пусть в узел a втекает известный ток I ( Рис. 9.3). Необходимо найти токи и .

Запишем эквивалентное сопротивление двух параллельных ветвей:

Теперь, чтобы найти ток , протекающий через резистор (см. Рис. 9.3), в формулу эквивалентного сопротивления (Пр. 9.1.1) вместо в числителе ставим ток I, втекающий в узел a:

.

Аналогично находится ток через резистор :

.

Источник