Меню

Как определить скорость катера по мощности двигателя



Расчет скорости маломерного судна (моторная лодка, катер)

Катера и Яхты, №26, 1970 год

Точный расчет скорости маломерного судна — дело сложное, и нередко расчетная скорость намного отличается от фактической. Неточность расчета объясняется двумя основными причинами. Первая из них состоит в том, что скорость зависит от очень большого числа факторов, таких, например, как размерения, вес и характер обводов судна, положение его центра тяжести, мощность двигателя, потери мощности в валопроводе и передаче, число оборотов гребного вала, размеры и качество изготовления гребного винта, расположение и обтекаемость выступающих частей (киль, руль, кронштейн винта и т. д.), состояние поверхности обшивки и т. п. Никакая даже самая сложная формула не может абсолютно точно учесть действие всех этих факторов одновременно. Вторая причина — это неизбежная разница между величинами, принятыми в проекте, и действительными, полученными при постройке; это касается главным образом веса судна, мощности двигателя и качества винта.

При расхождении 10% расчет скорости уже можно считать достаточно точным. Во всяком случае даже при разработке проекта специализированным конструкторским бюро обычно гарантируется фактическая скорость на 10% меньше, чем получалась по расчету.

Любителям, которым особо точный расчет с проведением модельных испытаний не по силам (да и не нужен!), можно рекомендовать приближенные способы определения скорости, рассматриваемые ниже. Тем более, что и при использовании приводимых диаграмм очень часто получается расхождение меньше упомянутых 10%.

Считаем нужным предупредить: чтобы потом не пришлось разочаровываться, получая меньшую скорость, чем выходила «на бумаге», берите крайние — «худшие» из возможных — значения тех величин, которые вам известны недостаточно точно. Это замечание относится в первую очередь к весу еще не построенного судна, мощности подержанного двигателя и т.п.

Определение скорости по весу судна и мощности двигателя.

Это — основные величины из всех влияющих на скорость. Диаграмма (рис. 1) показывает скорость водоизмещающих лодок и лодок, плавающих в переходном режиме, когда судно уже не менее чем на 60% поддерживается гидродинамической подъемной силой. Эта диаграмма (как и следующая — рис. 2) обеспечивает достаточную точность лишь при условии соответствия обводов судна режиму движения. Если, например, корпус лодки имеет обводы глиссера, но мощность двигателя недостаточна для того, чтобы достичь скольжения, скорость, вычисленная по этой диаграмме, всегда будет выше действительной, причем разница будет особенно значительна (20—30%) для малых скоростей. Еще большее расхождение (до 40%) может получиться, если мощность двигателя и вес лодки соответствуют переходу на глиссирование, а корпус лодки имеет сугубо водоизмещающие обводы (острая, ложкообразная корма без транца).

Остается добавить, что имеется в виду лодка с тщательно изготовленным корпусом и гребным винтом; в противном случае скорость будет, разумеется, ниже (на те же 10—15%).

Определение скорости лодки по весу судна
Рис.1. Скорость лодки в зависимости от веса загруженной и снаряженной лодки D (т), номинальной мощности двигателя N (л. с.) и длинны по ватерлинии LWL(M).

Режим движения: I-I — граница между чисто водоизмещающим плаванием (ниже прямой) и началом переходного режима; II-II — переходный режим, хорошее скольжение; III-III — выше этой линии чистое глиссирование.

Оптимальные обводы: А — острая корма; В — килеватая транцевая корма, круглоскулые или килеватые остроскулые обводы; В — остроскулые обводы с широкой плоской транцевой кормой, глиссирующие обводы.

Определение скорости лодки по весу судн
Рис.2. Скорость глиссирующих мотолодок в зависимости от веса лодки D (кг), номинальной мощности двигателя N (л. с.) и длины по ватерлинии LWL(M).

Заштрихована область лодок длиной 3,5— 5 м. I — лодки обычного (среднего) качества постройки; II — лодки лучшего исполнения.

Пользоваться диаграммой (рис. 1) просто. Высчитывается отношение мощности к весу лодки. От вертикальной оси из точки, соответствующей полученному отношению, проводим горизонталь. Пересечение этой горизонтали с кривой-длины лодки дает точку, по которой на горизонтальной оси отсчитывается скорость хода.

Например, для лодки весом 500 кг с двигателем мощностью 10 л. с. получается отношение N/D = 10:0,5 = 20 л.с./т. При длине по ватерлинии, например, 6 м получается скорость 18,5 км/час (разумеется, если лодка имеет корпус типа Б, а не А).

Диаграмма рис. 2 применима для определения скорости только глиссирующих мотолодок. Подобные кривые, имеющиеся во многих популярных изданиях, как правило, относятся к более крупным судам. Приводимая диаграмма откорректирована по результатам, полученным при испытаниях малых судов — глиссирующих мотолодок. Расхождения между расчетной и действительной скоростями у глиссирующих лодок бывают больше, чем у водоизмещающих (до 10— 20%), так как возрастает степень влияния трудно учитываемых факторов. Очень важную роль играют сопротивление выступающих частей (оно может составить наибольшую долю полного сопротивления) и правильная центровка, обеспечивающая наиболее выгодный угол атаки глиссирующего днища.

Читайте также:  Как определить мощность сопротивления по схеме

Следует иметь в виду, что эта диаграмма разработана для глиссеров безреданных, с широким плоским днищем (малая килеватость), острыми скуловыми гранями, широким транцем. При небольшом радиусе скругления скулы скорость уменьшится незначительно, но при более заметном скруглении обводов и увеличении килеватости днища фактическая скорость будет существенно ниже определенной по рис. 2.

Определение скорости по сопротивлению воды движению корпуса и упору винта подвесного мотора.

Этот сравнительно точный для средних скоростей порядка 10—30 км/час способ основан на том принципе, что сопротивление воды движению судна равно или чуть меньше, чем упор гребного винта. Заметим, что у водоизмещающих судов с килеватым днищем для компенсации влияния засасывания упор должен быть на 10—15% больше сопротивления, а у судов глиссирующих эта разница незначительна и обычно не учитывается.

Напомним, что упор винта — это толкающая судно сила, которую создает вращающийся винт. Расчет упора представляет значительную сложность, поэтому придется несколько сузить область применения рассматриваемого способа любителями: будем говорить лишь об определении скорости лодок с подвесными моторами, упор винтов которых известен.

На рис. 3 приведена диаграмма для определения скорости по ориентировочному значению упора и мощности подвесного мотора. Сразу же заметим, что характер кривой упора одного и того же мотора зависит от шага винта (при постоянном диаметре), но расхождения в получаемых результатах для средних скоростей обычно невелики. На кривых указаны величины шагового отношения, к которым относятся значения упора и скорости.

Расчет скорости маломерного судна (моторная лодка, катер)
Рис. 3. Упор Р (кг) гребного винта подвесного мотора, в зависимости от скорости. Шаговое отношение H/D = 1,0-1,2.

Табл.1. Определение значений упора для выбранных скоростей
Расчет скорости маломерного судна (моторная лодка, катер)

Для определения упора используем диаграмму (рис. 4), на которой показана зависимость удельного сопротивления лодок разных типов от относительной скорости. Диаграмма построена для сопротивления движению голых корпусов, без учета сопротивления выступающих частей, которые надо учесть дополнительно увеличением полученного значения примерно на 10%. Для полуглиссеров и безреданных глиссеров обозначена зона, дающая возможность оценить влияние положения центра тяжести. В принципе следует учесть, что для относительных скоростей до 12—14 меньшее сопротивление имеют лодки с большим значением Xg в отмеченной зоне.

Поясним, как пользоваться диаграммами. Выбираются несколько различных значений скорости (четыре-пять), заведомо охватывающих возможный диапазон, и для каждого из них высчитываются относительные скорости V/ √ LWL. Затем для каждой из полученных величин с диаграммы рис. 4 снимаются значения относительного сопротивления R/D и умножением на вес судна D высчитываются значения R. Полученные значения для учета сопротивления выступающих частей увеличиваются на 10%. Считаем, что для глиссирующих мотолодок P=R. Теперь на рис. 3 по значениям выбранных ранее четырех-пяти скоростей и соответствующим им величинам упора строим вспомогательную кривую. Пересечение этой вспомогательной кривой с кривой упора для выбранного мотора дает положение точки, перпендикуляр из которой на горизонтальную ось показывает максимально достижимую скорость.

Рассмотрим пример определения скорости лодки с полуглиссирующими обводами (плоское дно со скруглением скулы, транец) общим весом 400 кг, с положением центра тяжести на 40% L от транца, длиной по ватерлинии 4 м при использовании подвесного мотора «Москва» мощностью 10 л. с.

Кривая, построенная для полученных (см. таблицу) значений Р на рис. 3, пересекается с кривой для мощности 10 л. с. в точке, соответствующей скорости 19,0 км/час; следовательно, эта скорость и является наибольшей достижимой.

Добавим, что для скоростных глиссеров со скоростью более 30 км/час этот способ менее приемлем, поскольку для них нужно более точно учитывать влияние положения центра тяжести и сопротивления выступающих частей.

Расчет скорости маломерного судна (моторная лодка, катер)
Удельное сопротивление движению R/D различных типов мотолодок в зависимости от отношения скорости лодки V (км/час) к длине по ватерлинии LWL (м).

1 — водоизмещающий корпус с круглоскулыми обводами; 2 — водоизмещающий корпус с остроскулыми обводами; 3 — водоизмещающее плоскодонное судно (понтон); 4 — полуглиссирующий корпус; 5 — реданный глиссер; 6 — глиссирующий корпус.

Заштрихованы области между кривыми, построенными для случаев с расположением центра тяжести от транца Xg = 0,38LWL и Xg = 0,44LWL

Расчет скорости по сопротивлению воды движению лодки и эффективности движителя.

Диаграмму рис. 4 можно с успехом применить и для приближенного расчета мощности N, обеспечивающей заданную скорость, по формуле N=RV/K л.с.

Читайте также:  Свободная мощность электроснабжения это

где R — сопротивление движению (кг), определенное по рис. 4 для заданной скорости;
V — скорость, км/час;
К — коэффициент, равный 160 — при очень хорошем к. п. д. винта (скоростные спортивные лодки); 140 — при хорошем к. п. д. (большие винты, меньшее число оборотов, высокие скорости); 120 — при средней эффективности винта (средние винты, средние скорости); 100—для малоэффективнных винтов (небольшие винты, малые скорости).

По этой формуле можно подсчитать и максимально достижимую скорость, задаваясь по очереди несколькими скоростями и высчитывая для каждой из них мощности до тех пор, пока не получим мощность данного двигателя, или применив графический метод.

Подобные прикидочные расчеты рекомендуется сделать всеми приведенными выше способами. Это позволит, с одной стороны, — вскрыть возможные арифметические ошибки, с другой стороны — по разнице в получающихся результатах прикинуть возможное расхождение между фактическими и расчетными скоростями. Было бы, однако, ошибкой предполагать, что действительная скорость будет средним арифметическим получившихся значений. Наиболее близкими будут те скорости, которые были получены наиболее применимым для данного случая способом и на основе более точных предпосылок.

Источник

Какая будет скорость?

Рассчитать скорость проектируемого катера даже с такой невысокой точностью, как 5—10%, возможно лишь при наличии кри­вых сопротивления, полученных при испытаниях модели данного проекта или достаточно близкого прототипа.

Для предварительной оценки ходкости малых судов используются приближенные методы, два из которых предлагаются вниманию чита­телей. Оба метода разработаны по статистическим данным натурных испытаний большого числа малых судов и учитывают только основные факторы, влияющие на скорость.

Ожидаемую скорость водоизмещающего или полуглиссирующего катера можно оценить с помощью табл. 3. Вводными данными к расчету являются длина судна по ватерлинии, его водоизмещение и мощность двигателя. С помощью таблицы решается и другая задача — определе­ние примерной потребной мощности двигателя по заданной скорости. В процессе расчета может потребоваться интерполяция по длине катера или его водоизмещению. Например, следует подсчитать мощность дви­гателя, необходимую для движения со скоростью 20 км/ч катера длиной 8,5 м и водоизмещением 2 т.

Из таблицы находим необходимую мощность двигателя для кате­ров с длиной мрньше (7,6 м) и больше (9,2 м) заданной: при L =7,6 м мощность N = 42 л. с, при L = 9,2 м N = 32 л. с.

Потребная мощность при уменьшении длины судна на 1 м в рас­сматриваемом диапазоне длин:

Разность между длиной 9,2 и заданной длиной:

Скорость и мощность двигателя водоизмещакнцнх катеров

/J. JlHHa ПО конструктивной ватерлинии м

Водо — изме — щение, т

Острая (типа каноэ,

С плоским днищем

Транцевая с очень плоским днищем либо остроску — лыми обводами

Мощность двигателя для катера длиной 8,5 м JV= 32 + 6,25-0,7= 36,5 л. с.

В дгнксм методе учитывается только относительная длина судна и его относительная скорость Fr = V!-/GL Подразумевается, что обводы корпуса должны быть оптимальны для данного режима (см. с. 9) так же, как и значение призматического коэффициента полноты и положения центра тяжести по длине.

Какая будет скорость?

На рис. 91 приведены кривые для определения достижимой ско­рости чисто глиссирующих мотолодок и катеров с остроскулыми обво­дами длиной от 3,5 до 6 м. Кривые построены на основе испытаний большого числа мотолодок с подвесными моторами, но метод пригоден и для катеров, снабженных установкой с гребным винтом и рулем.

Рис. 91. График для предвари­тельной оценки скорости глисси­рующих мотолодок длиной 3,5— 6 м при заданной мощности подвесного мотора N (л. с), пол­ной массе судна D (кг) и ширине глиссирующего участка дни­ща В (см).

При использовании этого метода надо еще учесть, что для полной отдачи мощности двигателя необходимо применять сменные гребные винты с оптимальным шагом. В противном случае полученная на прак­тике скорость может оказаться значительно ниже расчетной. Другой важный фактор — это оптимальная центровка судна для данной ско­рости, обусловливающая ходовой дифферент и смоченную поверхность днища. Даже если применены оптимальные мотор и гребной винт, неправильное положение центра тяжести по длине может оказаться причиной снижения скорости до 30—50% от получаемой по данному методу.

Источник

Пояснения к расчёту скорости

Для чего нужно рассчитывать скорость лодки? Вопрос далеко не такой праздный, как может показаться с первого взгляда. Дело в том, что собираясь приобретать судно, его потенциальный владелец связывает с будущим приобретением определённые планы. И если лодка не покажет тех скоростных качеств, каковые «обещает» рекламный проспект, покупателя может ждать серьёзное разочарование. И дело тут вовсе не в огорчении любителя быстрой езды от того факта, что лодка развивает скорость на пару километров в час меньше обещаной. Дело в том, что в последнее время многие производители и, особенно, многочисленные дилеры-дистрибюторы-продавцы, совершенно беззастенчиво приводят сильно завышенные, просто фантастические значения скорости. А если судно не достигло заявленной скорости, то и расход горючего на единицу пройденного пути будет соответственно гораздо больше ожидаемого. При большой нагрузке лодка может вообще не выйти на глиссирование, будет идти в водоизмещающем режиме и расход горючего при этом будет просто огромным.

Читайте также:  Среднегодовая вводимая мощность определяется

В результате водномоторник столкнётся с необходимостью нести значительно большие эксплуатационные расходы, чем те, на которые он рассчитывал изначально. Возможно, ему придётся покупать более мощный мотор для обеспечения выхода на глиссирование с большой нагрузкой, и на перепродаже старого мотора он также потеряет немалые деньги.

Возможна и противоположная ситуация: не доверяя рекламе продавцов, водномоторник приобретёт слишком мощный мотор. Эксплуатация лодки под таким мотором будет затруднена из-за большого веса мотора, чрезмерного расхода горючего, может быть просто опасной. Просчитав же скорости лодки под моторами различной мощности, потенциальный покупатель может убедиться, что достаточно использовать мотор меньшей мощности, сэкономив тем самым как деньги при его покупке, так при эксплуатации. Кроме того, менее мощный мотор как правило менее шумный.

Распространено мнение, что скорость строящегося катера точно рассчитать невозможно.

Действительно, различного рода эмпирические формулы, номограммы и упрощенные методы расчета скорости катеров не учитывают всего многообразия факторов, влияющих на действительную скорость катера (например, качество регулировки систем двигателя, окраски корпуса). Однако это справедливо только применительно к конкретному катеру, для которого все множество факторов, влияющих на его скорость, суммируется в двух основных обстоятельствах: удачна или неудачна конструкция катера, в хорошем или в плохом состоянии его корпус, механизмы и устройства. Если же говорить об определении скорости катера в процессе проектирования упрощенными, а на самом деле обобщенными методами, то нет основании к столь пессимистическому выводу. Проектируя новый катер, рассчитывают скорость, которую должен иметь создаваемый катер при выбранном двигателе, размерениях, нагрузке, а не ту скорость, которая может получиться, если проект судна будет выполнен неумело или, наоборот, если ранее не проверявшееся нововведение окажется исключительно удачным, эффективным и приведет к заметному увеличению скорости катера. Никто не проектирует заведомо неудачные катера, и немногие берутся гарантировать успех от применения не проверенного, не исследованного ранее усовершенствования обводов или конструкции! Если расчет скорости катера рассматривать с изложенной точки зрения, то любой метод, основанный на квалифицированной обработке проверенных данных по большому числу испытанных катеров, которые являются обычными удачными катерами, может быть использован при проектировании. Вопрос лишь в том, чтобы принятый метод расчета соответствовал типу проектируемого катера, чтобы номограмма для расчета скорости гоночного глиссера не использовалась для расчета скорости мореходного туристского катера; чтобы метод расчета скорости, разработанный путем обработки результатов испытаний моторно-парусных яхт, не применялся при проектировании быстроходных мотолодок и т. д.

Вниманию читателей предлагается три программы, позволяющие прямо в online-режиме выполнять примерные расчёты скорости лодки:

Программа №1 рассчитывает скорость лодки с малой нагрузкой (одним водителем на борту). В качестве исходных данных используются размерения судна. Предполагается, что судно построено по некоей стандартной не революционной технологии, поэтому этот расчёт даёт хорошее совпадение результатов с реальными скоростями большинства привычных «дюралек» и прочих «жёстких» судов. Для надувных лодок и некоторых современных облегченных «дельтавидных» в плане лодок эта методика даёт заниженные значения скорости.

Программа №2 позволяет учесть водоизмещение и ширину глиссирующего участка днища.

Программа №3 учитывает водоизмещение и позволяет выбрать тип судна для расчёта.

Для оценки скоростных возможностей лодки имеет смысл посчитать её максимальную скорость всеми тремя способами, а скорости при различных нагрузках — программами №2 и №3. При этом не следует пытаться найти среднеарифметическое значение полученных разными способами величин — точность от этого не улучшится. Однако, несмотря на приблизительность расчётов, истинное значение скорости практически всегда будет «охватываться» найденными расчётами значениями и позволит принять правильное решение при оценке скоростных и экономических возможностей приобретаемого судна.

Источник

Как определить скорость катера по мощности двигателя



Расчет скорости маломерного судна (моторная лодка, катер)

Катера и Яхты, №26, 1970 год

Точный расчет скорости маломерного судна — дело сложное, и нередко расчетная скорость намного отличается от фактической. Неточность расчета объясняется двумя основными причинами. Первая из них состоит в том, что скорость зависит от очень большого числа факторов, таких, например, как размерения, вес и характер обводов судна, положение его центра тяжести, мощность двигателя, потери мощности в валопроводе и передаче, число оборотов гребного вала, размеры и качество изготовления гребного винта, расположение и обтекаемость выступающих частей (киль, руль, кронштейн винта и т. д.), состояние поверхности обшивки и т. п. Никакая даже самая сложная формула не может абсолютно точно учесть действие всех этих факторов одновременно. Вторая причина — это неизбежная разница между величинами, принятыми в проекте, и действительными, полученными при постройке; это касается главным образом веса судна, мощности двигателя и качества винта.

При расхождении 10% расчет скорости уже можно считать достаточно точным. Во всяком случае даже при разработке проекта специализированным конструкторским бюро обычно гарантируется фактическая скорость на 10% меньше, чем получалась по расчету.

Любителям, которым особо точный расчет с проведением модельных испытаний не по силам (да и не нужен!), можно рекомендовать приближенные способы определения скорости, рассматриваемые ниже. Тем более, что и при использовании приводимых диаграмм очень часто получается расхождение меньше упомянутых 10%.

Считаем нужным предупредить: чтобы потом не пришлось разочаровываться, получая меньшую скорость, чем выходила «на бумаге», берите крайние — «худшие» из возможных — значения тех величин, которые вам известны недостаточно точно. Это замечание относится в первую очередь к весу еще не построенного судна, мощности подержанного двигателя и т.п.

Определение скорости по весу судна и мощности двигателя.

Это — основные величины из всех влияющих на скорость. Диаграмма (рис. 1) показывает скорость водоизмещающих лодок и лодок, плавающих в переходном режиме, когда судно уже не менее чем на 60% поддерживается гидродинамической подъемной силой. Эта диаграмма (как и следующая — рис. 2) обеспечивает достаточную точность лишь при условии соответствия обводов судна режиму движения. Если, например, корпус лодки имеет обводы глиссера, но мощность двигателя недостаточна для того, чтобы достичь скольжения, скорость, вычисленная по этой диаграмме, всегда будет выше действительной, причем разница будет особенно значительна (20—30%) для малых скоростей. Еще большее расхождение (до 40%) может получиться, если мощность двигателя и вес лодки соответствуют переходу на глиссирование, а корпус лодки имеет сугубо водоизмещающие обводы (острая, ложкообразная корма без транца).

Остается добавить, что имеется в виду лодка с тщательно изготовленным корпусом и гребным винтом; в противном случае скорость будет, разумеется, ниже (на те же 10—15%).

Определение скорости лодки по весу судна
Рис.1. Скорость лодки в зависимости от веса загруженной и снаряженной лодки D (т), номинальной мощности двигателя N (л. с.) и длинны по ватерлинии LWL(M).

Режим движения: I-I — граница между чисто водоизмещающим плаванием (ниже прямой) и началом переходного режима; II-II — переходный режим, хорошее скольжение; III-III — выше этой линии чистое глиссирование.

Оптимальные обводы: А — острая корма; В — килеватая транцевая корма, круглоскулые или килеватые остроскулые обводы; В — остроскулые обводы с широкой плоской транцевой кормой, глиссирующие обводы.

Читайте также:  Чему равна мощность множества всего алфавита

Определение скорости лодки по весу судн
Рис.2. Скорость глиссирующих мотолодок в зависимости от веса лодки D (кг), номинальной мощности двигателя N (л. с.) и длины по ватерлинии LWL(M).

Заштрихована область лодок длиной 3,5— 5 м. I — лодки обычного (среднего) качества постройки; II — лодки лучшего исполнения.

Пользоваться диаграммой (рис. 1) просто. Высчитывается отношение мощности к весу лодки. От вертикальной оси из точки, соответствующей полученному отношению, проводим горизонталь. Пересечение этой горизонтали с кривой-длины лодки дает точку, по которой на горизонтальной оси отсчитывается скорость хода.

Например, для лодки весом 500 кг с двигателем мощностью 10 л. с. получается отношение N/D = 10:0,5 = 20 л.с./т. При длине по ватерлинии, например, 6 м получается скорость 18,5 км/час (разумеется, если лодка имеет корпус типа Б, а не А).

Диаграмма рис. 2 применима для определения скорости только глиссирующих мотолодок. Подобные кривые, имеющиеся во многих популярных изданиях, как правило, относятся к более крупным судам. Приводимая диаграмма откорректирована по результатам, полученным при испытаниях малых судов — глиссирующих мотолодок. Расхождения между расчетной и действительной скоростями у глиссирующих лодок бывают больше, чем у водоизмещающих (до 10— 20%), так как возрастает степень влияния трудно учитываемых факторов. Очень важную роль играют сопротивление выступающих частей (оно может составить наибольшую долю полного сопротивления) и правильная центровка, обеспечивающая наиболее выгодный угол атаки глиссирующего днища.

Следует иметь в виду, что эта диаграмма разработана для глиссеров безреданных, с широким плоским днищем (малая килеватость), острыми скуловыми гранями, широким транцем. При небольшом радиусе скругления скулы скорость уменьшится незначительно, но при более заметном скруглении обводов и увеличении килеватости днища фактическая скорость будет существенно ниже определенной по рис. 2.

Определение скорости по сопротивлению воды движению корпуса и упору винта подвесного мотора.

Этот сравнительно точный для средних скоростей порядка 10—30 км/час способ основан на том принципе, что сопротивление воды движению судна равно или чуть меньше, чем упор гребного винта. Заметим, что у водоизмещающих судов с килеватым днищем для компенсации влияния засасывания упор должен быть на 10—15% больше сопротивления, а у судов глиссирующих эта разница незначительна и обычно не учитывается.

Напомним, что упор винта — это толкающая судно сила, которую создает вращающийся винт. Расчет упора представляет значительную сложность, поэтому придется несколько сузить область применения рассматриваемого способа любителями: будем говорить лишь об определении скорости лодок с подвесными моторами, упор винтов которых известен.

На рис. 3 приведена диаграмма для определения скорости по ориентировочному значению упора и мощности подвесного мотора. Сразу же заметим, что характер кривой упора одного и того же мотора зависит от шага винта (при постоянном диаметре), но расхождения в получаемых результатах для средних скоростей обычно невелики. На кривых указаны величины шагового отношения, к которым относятся значения упора и скорости.

Расчет скорости маломерного судна (моторная лодка, катер)
Рис. 3. Упор Р (кг) гребного винта подвесного мотора, в зависимости от скорости. Шаговое отношение H/D = 1,0-1,2.

Табл.1. Определение значений упора для выбранных скоростей
Расчет скорости маломерного судна (моторная лодка, катер)

Для определения упора используем диаграмму (рис. 4), на которой показана зависимость удельного сопротивления лодок разных типов от относительной скорости. Диаграмма построена для сопротивления движению голых корпусов, без учета сопротивления выступающих частей, которые надо учесть дополнительно увеличением полученного значения примерно на 10%. Для полуглиссеров и безреданных глиссеров обозначена зона, дающая возможность оценить влияние положения центра тяжести. В принципе следует учесть, что для относительных скоростей до 12—14 меньшее сопротивление имеют лодки с большим значением Xg в отмеченной зоне.

Читайте также:  Диммер своими руками схема диммера регулятор мощности схема

Поясним, как пользоваться диаграммами. Выбираются несколько различных значений скорости (четыре-пять), заведомо охватывающих возможный диапазон, и для каждого из них высчитываются относительные скорости V/ √ LWL. Затем для каждой из полученных величин с диаграммы рис. 4 снимаются значения относительного сопротивления R/D и умножением на вес судна D высчитываются значения R. Полученные значения для учета сопротивления выступающих частей увеличиваются на 10%. Считаем, что для глиссирующих мотолодок P=R. Теперь на рис. 3 по значениям выбранных ранее четырех-пяти скоростей и соответствующим им величинам упора строим вспомогательную кривую. Пересечение этой вспомогательной кривой с кривой упора для выбранного мотора дает положение точки, перпендикуляр из которой на горизонтальную ось показывает максимально достижимую скорость.

Рассмотрим пример определения скорости лодки с полуглиссирующими обводами (плоское дно со скруглением скулы, транец) общим весом 400 кг, с положением центра тяжести на 40% L от транца, длиной по ватерлинии 4 м при использовании подвесного мотора «Москва» мощностью 10 л. с.

Кривая, построенная для полученных (см. таблицу) значений Р на рис. 3, пересекается с кривой для мощности 10 л. с. в точке, соответствующей скорости 19,0 км/час; следовательно, эта скорость и является наибольшей достижимой.

Добавим, что для скоростных глиссеров со скоростью более 30 км/час этот способ менее приемлем, поскольку для них нужно более точно учитывать влияние положения центра тяжести и сопротивления выступающих частей.

Расчет скорости маломерного судна (моторная лодка, катер)
Удельное сопротивление движению R/D различных типов мотолодок в зависимости от отношения скорости лодки V (км/час) к длине по ватерлинии LWL (м).

1 — водоизмещающий корпус с круглоскулыми обводами; 2 — водоизмещающий корпус с остроскулыми обводами; 3 — водоизмещающее плоскодонное судно (понтон); 4 — полуглиссирующий корпус; 5 — реданный глиссер; 6 — глиссирующий корпус.

Заштрихованы области между кривыми, построенными для случаев с расположением центра тяжести от транца Xg = 0,38LWL и Xg = 0,44LWL

Расчет скорости по сопротивлению воды движению лодки и эффективности движителя.

Диаграмму рис. 4 можно с успехом применить и для приближенного расчета мощности N, обеспечивающей заданную скорость, по формуле N=RV/K л.с.

где R — сопротивление движению (кг), определенное по рис. 4 для заданной скорости;
V — скорость, км/час;
К — коэффициент, равный 160 — при очень хорошем к. п. д. винта (скоростные спортивные лодки); 140 — при хорошем к. п. д. (большие винты, меньшее число оборотов, высокие скорости); 120 — при средней эффективности винта (средние винты, средние скорости); 100—для малоэффективнных винтов (небольшие винты, малые скорости).

По этой формуле можно подсчитать и максимально достижимую скорость, задаваясь по очереди несколькими скоростями и высчитывая для каждой из них мощности до тех пор, пока не получим мощность данного двигателя, или применив графический метод.

Подобные прикидочные расчеты рекомендуется сделать всеми приведенными выше способами. Это позволит, с одной стороны, — вскрыть возможные арифметические ошибки, с другой стороны — по разнице в получающихся результатах прикинуть возможное расхождение между фактическими и расчетными скоростями. Было бы, однако, ошибкой предполагать, что действительная скорость будет средним арифметическим получившихся значений. Наиболее близкими будут те скорости, которые были получены наиболее применимым для данного случая способом и на основе более точных предпосылок.

Читайте также:  Как найти мощность электрического чайника формула

Источник

Какая будет скорость?

Рассчитать скорость проектируемого катера даже с такой невысокой точностью, как 5—10%, возможно лишь при наличии кри­вых сопротивления, полученных при испытаниях модели данного проекта или достаточно близкого прототипа.

Для предварительной оценки ходкости малых судов используются приближенные методы, два из которых предлагаются вниманию чита­телей. Оба метода разработаны по статистическим данным натурных испытаний большого числа малых судов и учитывают только основные факторы, влияющие на скорость.

Ожидаемую скорость водоизмещающего или полуглиссирующего катера можно оценить с помощью табл. 3. Вводными данными к расчету являются длина судна по ватерлинии, его водоизмещение и мощность двигателя. С помощью таблицы решается и другая задача — определе­ние примерной потребной мощности двигателя по заданной скорости. В процессе расчета может потребоваться интерполяция по длине катера или его водоизмещению. Например, следует подсчитать мощность дви­гателя, необходимую для движения со скоростью 20 км/ч катера длиной 8,5 м и водоизмещением 2 т.

Из таблицы находим необходимую мощность двигателя для кате­ров с длиной мрньше (7,6 м) и больше (9,2 м) заданной: при L =7,6 м мощность N = 42 л. с, при L = 9,2 м N = 32 л. с.

Потребная мощность при уменьшении длины судна на 1 м в рас­сматриваемом диапазоне длин:

Разность между длиной 9,2 и заданной длиной:

Скорость и мощность двигателя водоизмещакнцнх катеров

/J. JlHHa ПО конструктивной ватерлинии м

Водо — изме — щение, т

Острая (типа каноэ,

С плоским днищем

Транцевая с очень плоским днищем либо остроску — лыми обводами

Мощность двигателя для катера длиной 8,5 м JV= 32 + 6,25-0,7= 36,5 л. с.

В дгнксм методе учитывается только относительная длина судна и его относительная скорость Fr = V!-/GL Подразумевается, что обводы корпуса должны быть оптимальны для данного режима (см. с. 9) так же, как и значение призматического коэффициента полноты и положения центра тяжести по длине.

Какая будет скорость?

На рис. 91 приведены кривые для определения достижимой ско­рости чисто глиссирующих мотолодок и катеров с остроскулыми обво­дами длиной от 3,5 до 6 м. Кривые построены на основе испытаний большого числа мотолодок с подвесными моторами, но метод пригоден и для катеров, снабженных установкой с гребным винтом и рулем.

Рис. 91. График для предвари­тельной оценки скорости глисси­рующих мотолодок длиной 3,5— 6 м при заданной мощности подвесного мотора N (л. с), пол­ной массе судна D (кг) и ширине глиссирующего участка дни­ща В (см).

При использовании этого метода надо еще учесть, что для полной отдачи мощности двигателя необходимо применять сменные гребные винты с оптимальным шагом. В противном случае полученная на прак­тике скорость может оказаться значительно ниже расчетной. Другой важный фактор — это оптимальная центровка судна для данной ско­рости, обусловливающая ходовой дифферент и смоченную поверхность днища. Даже если применены оптимальные мотор и гребной винт, неправильное положение центра тяжести по длине может оказаться причиной снижения скорости до 30—50% от получаемой по данному методу.

Источник