Меню

Как определить мощность вэу



Расчет выработки энергии ветрогенераторной станцией

Ветрогенератор в автономной системе очень нужен. По большей части тем, что его выработка не имеет ярко выраженной зависимости от сезонов. Солнечные батареи, в наших широтах, хорошо работают летом и плохо зимой, тогда как ветрогенераторы сохраняют свою эффективность в зимний период. Немало важно то, что сильные ветра, как правило, наблюдаются в пасмурную погоду, поэтому совместное применение ветрогенераторов и солнечных панелей достаточно обоснованно. В этой статье мы рассматриваем малые ветроэнергетические установки (ВЭУ) т.е. установки мощностью от 40 Вт до 20 кВт.

Ветрогенераторы достаточно эффективны в прибрежных районах, либо на возвышенностях, где скорости ветра выше и ветра чаще. На большей части территории России средняя скорость ветра составляет 4-5 метров в секунду, что создает неблагоприятные условия для применения ветрогенераторов (и это на высоте 10 м от поверхности земли, стандартная высота расположения анемометра на метеостанциях). Но данные усреднены, поэтому следует изучить энергопотенциал конкретной местности, если существует подозрение, что ветрогенератор может быть эффективен.

Основная проблема ветровых станций заключается в том, что их эффективность мала при низких скоростях ветра. Если внимательно посмотреть на кривую зависимости мощности от скорости ветра, то можно обнаружить следующее: стартовая скорость большинства современных ВЭУ располагаться в пределах 3 — 4 м/с. Но необходимо, чтоб ветровой поток продержался на этом уровне не наименее 10 мин, лишь тогда автоматика даст позволение на запуск ВЭУ. При этом более-менее ощутимая, выработка энергии начнется только при 7 метрах в секунду, а ВЭУ, трудящаяся при средней скорости 6 м/с, генерирует емкость на 44 % большую, чем при скорости 5 м/с…

Многие хотят уменьшить начальную скорость ветра при котором начинается вращаться турбина до 1-2 м/с — мол слабый ветер бывает всегда и пусть в аккумуляторы всегда что-то «капает». Однако, при такой скорости ветер имеет ОЧЕНЬ мало энергии. Если ветрогенератор и вся система рассчитаны на 3-5кВт, то 5-10 Вт не решат никаких проблем.

Перейдем теперь к методам расчета систем с ветряными электростанциями. Покупая устройство, вы будете знать его заявленную номинальную мощность, а также найдете в инструкции график зависимости мощности вырабатываемой «ветряком» от скорости ветра.

Из формулы P=( η*КИЭВ* ρ*V 3 *π*D 2 )/8 видно, что мощность ветрового потока пропорциональна кубу скорости ветра и квадрату диаметра колеса турбины. Это означает, что при увеличении скорости ветра вдвое, мощность потока возрастет в 8 раз, а при увеличении длины лопастей вдвое, мощность ветрогенератора возрастет в 4 раза.

В таблице приведены величины мощности ветровой турбины, в зависимости от скорости ветра и диаметра колеса турбины. Коэффициент эффективности турбины k = 0,25.

V м/с 3 4 5 6 7 8 9 10 11
P Вт d = 1м 3 8 15 27 42 63 90 122 143
P Вт d = 2м 13 31 61 107 168 250 357 490 650
P Вт d = 3м 30 71 137 236 376 564 804 1102 1467
P Вт d = 4м 53 128 245 423 672 1000 1423 1960 2600
P Вт d = 5м 83 196 383 662 1050 1570 2233 3063 4076
P Вт d = 6м 120 283 551 953 1513 2258 3215 4410 5866
P Вт d = 7м 162 384 750 1300 2060 3070 4310 6000 8000
P Вт d = 8м 212 502 980 1693 2689 4014 5715 7840 10435
P Вт d = 9м 268 635 1240 2140 3403 5080 7230 9923 13207
P Вт d = 10м 331 784 1531 2646 4200 6270 8930 12250 16300
Читайте также:  Форд куга мощность аккумулятора

Вы видите, как сильно возрастает величина мощности ветрового потока при увеличении скорости ветра только на 1 м/с.

Прежде чем звонить в компанию занимающуюся продажей ветрогенераторных установок надо узнать две цифры:

1) Потребление электроэнергии в месяц в киловатт-часах — все платят за электричество в квартирах или домах ежемесячно и эта цифра поможет оценить Ваши потребности.

Можно эту цифру посчитать примерно и самому, например:

1. Лампочка (сразу лучше меняйте на энергосберегающие или LED) — 20Вт — эквивалент 100Вт обычной (1кВт — это 1000Вт, то есть 20Вт — это 0,02кВт) горит 5 часов в день, поэтому мощность в кВт умножаем на часы работы в месяц — 0,02 * 5 * 30(дней в месяце) = 3кВт*часа в месяц.

2. Холодильник 300Вт, работает примерно 30% времени, то есть 8 часов в сутки — 0,3 * 8 * 30 = 72кВт*часа в месяц.

3. Электрочайник 1,5 кВт, работает 0,5 часа в день — 1,5 * 0,5 *30 = 22,5кВт*часа в месяц

И так далее по всем приборам.

Потом всё суммируете — 3 + 72 + 22,5 = 97,5кВт*час в месяц.

Это и есть месячное потребление — примерно 100кВт*час в месяц в данном примере.

2) Среднегодовая скорость ветра в предполагаемом месте установки — её можно приблизительно узнать в ближайшей метеостанции.

Для выбора инвертора надо знать максимальную (пиковую) мощность потребления электроприборов с небольшим запасом — по ней выбирается его мощность. При наличии этих показателей можно быстро и грамотно подобрать необходимое оборудование, обратившись к продающей его организации.

При выборе оборудования не стоит опираться на мощность ветрогенератора — она сильно зависит от скорости ветра. Это только в бензогенераторе она соответствует указанной в паспорте. 5кВт ветрогенератор при слабом ветре (3-4м/с) выдаёт всего 0,1-0,2 кВт.

Очень часто покупатель ориентируется на максимальную (пиковую) мощность своего потребления и просит постоянно эту мощность — например 5кВт, как в бензогенераторе, например — начинаем разбираться, считать — и оказывается, что для лампочек, холодильника, телевизора и насоса вполне хватает 0,5кВт постоянной мощности — а это две большие разницы. Оценивать своё электропотребление нужно только по киловатт — часам в месяц.

Но и не стоит определять среднюю выдаваемую ветрогенератором мощность по среднегодовой скорости ветра — это будет намного заниженная цифра.

Существует атлас ветров России, в котором есть данные по ветру в 332 метеостанциях. «Роза ветров» так часто употребляемая обывателем в данной теме к ней относится «поскольку-постольку» — это статистика по направлениям ветра, а ветрогенератору всё равно — как часто с какой стороны дует. А вот при определении места установки ветрогенератора «Розу ветров» лучше учитывать, чтобы на направлении основных ветров не оказались высокие строения, деревья и прочие препятствия.

Читайте также:  Станция паяльная атр 1109 мощность 60вт напряжение 220в

Выбор мачты

Какую мачту выбрать — с растяжками или без?

Если место позволяет, то лучше ставить мачту с растяжками — она будет стоить в 3-5 раз дешевле мачты без растяжек. В настоящее время накоплен уже довольно богатый опыт установки мачт для ветрогенераторов на территории РФ и он позволяет утверждать об этом однозначно.

Иногда предлагают телескопические мачты — они удобны при частых подъёмах и опусканиях, в чём нет особой необходимости при использовании с ветрогенератором. Мощный ветряк на неё не поставишь — не более 1-2кВт, зато стоить она будет намного дороже.

Какой высоты должна быть мачта?

При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.

  • Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
  • Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
  • Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.

Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.

Конечно, чем выше мачта, тем лучше (чем больше высота — тем сильнее ветер, прямая зависимость), но не всегда более высокая мачта технически или экономически оправдывает себя. Посоветуйтесь со специалистом — обычно простого описания по телефону будет достаточно для определения оптимальной высоты мачты. При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.

  • Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
  • Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
  • Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.

Высота мачты практически не зависит от мощности ветрогенератора (от 1 до 10кВт). Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.

Все вышесказанное относится к мачтам для ветровых генераторов с горизонтальной осью вращения. Для ветровых генераторов с вертикальной осью вращения при выборе мачты существуют свои резоны, в данной статье не рассматриваемые.

  1. Главная
  2. Ветровые генераторы
  3. Расчет выработки энергии ветрогенераторной станцией

Источник

Как определить необходимую мощность ветрогенератора

Чтобы правильно подобрать необходимую мощность систем с ВЭУ, необходимо понять основные различия между выработанной энергией, потребляемой и аккумулируемой как резерв.

Но прежде чем говорить об устройстве, принципах установки и функционирования ВЭУ, стоит обратить внимание на три основные величины, которые имеют решающее значение при выборе элементов системы:

Читайте также:  Чем характеризуется производственная мощность предприятия

1) выходная мощность (Р, кВт) определяется только мощностью преобразователя и не зависит от скорости ветра и освещенности ФМ, емкости АБ;

2) время непрерывной работы (t, час) при отсутствии ветра/солнца определяется только емкостью АБ (А*ч) и зависит от величины и характера нагрузки и режимов работы. Для примера, в 4-х полностью заряженных АБ емкостью 200А*ч запасается 7-8кВт*ч электроэнергии, что при постоянной нагрузке 1кВт обеспечивает непрерывную работу 7-8 часов;

3) выработка электроэнергии (W, кВт*час) определяется реальным ветропотенциалом, высотой мачты, рельефом местности, солнечной освещенностью и расположением ФМ и, обычно, указывается за усредненный промежуток времени, например, месяц, т.к. дневная или, тем более, часовая выработка будет носить выборочный, случайный характер. Т.к. одну и ту же задачу по мощности, выработке с различными вариантами резервирования можно решить различным набором элементов системы, то нужно определиться с понятиями (лучше в количественном выражении):
1) мощность преобразователя (это первое, что определяется заказчиком исходя из его нагрузки);
2) мощность генерирования.
Это величины главные, но по физической сути — мгновенные, т.е. без увязки со временем.
Следующие по порядку определения (выбора):
3) выработка (энергия генерирования);
4) энергия резервирования (временной запас в аккумуляторных батареях с учетом мощности нагрузки)
являются более важными при расчете автономных систем.

Между величинами 1, 2, 3, 4 нет прямой связи, однако есть полученные опытным путем типовые системы или детально выбранный вместе с заказчиком оптимальный вариант для конкретного использования.

Как показывает практика, многие потребители путают понятия «мощность оборудования», которое измеряется в ваттах или киловаттах, и «производство электроэнергии этим оборудованием», которое равняется количеству произведенной энергии в единицу времени – Вт час, кВт час. Реальную стоимость имеют именно киловатт-часы, за которые потребитель платит деньги. Кроме того, опыт эксплуатации ВЭУ показал, что заказчики, как правило, не учитывают график распределения нагрузок на протяжении суток, а просто суммируют мощность потребителей в доме (электрооборудование и бытовая техника). Отсюда делается ошибочный вывод, что мощности системы с ВЭУ в 1,5 кВт недостаточно, хотя после расчетов, а особенно эксплуатации, становится очевидным, что месячное энергопотребление вполне покрывается возможностями стандартной ветроэнергетической установки, предназначенной для электроснабжения индивидуального дома и хозяйства. Например, производимая в Украине система с ВЭУ-08 мощностью 1,5 кВт способна выдавать в условиях Киевской области (далеко не самый благоприятный в отношении ветропотенциала регион Украины) летом до 100 кВт час в месяц, а в зимне-весенний сезон — свыше 200 кВт час, что соответствует энергопотреблению среднестатистической украинской семьей (100-300 кВт час в месяц). В местностях, где наблюдается значительный ветропотенциал (например, в степи или на возвышенности), или при условии применения мачты большей высоты производство электроэнергии возрастает в 1,5-2 раза, причем шумовое влияние уменьшается.

Источник

Как определить мощность вэу



Расчет выработки энергии ветрогенераторной станцией

Ветрогенератор в автономной системе очень нужен. По большей части тем, что его выработка не имеет ярко выраженной зависимости от сезонов. Солнечные батареи, в наших широтах, хорошо работают летом и плохо зимой, тогда как ветрогенераторы сохраняют свою эффективность в зимний период. Немало важно то, что сильные ветра, как правило, наблюдаются в пасмурную погоду, поэтому совместное применение ветрогенераторов и солнечных панелей достаточно обоснованно. В этой статье мы рассматриваем малые ветроэнергетические установки (ВЭУ) т.е. установки мощностью от 40 Вт до 20 кВт.

Ветрогенераторы достаточно эффективны в прибрежных районах, либо на возвышенностях, где скорости ветра выше и ветра чаще. На большей части территории России средняя скорость ветра составляет 4-5 метров в секунду, что создает неблагоприятные условия для применения ветрогенераторов (и это на высоте 10 м от поверхности земли, стандартная высота расположения анемометра на метеостанциях). Но данные усреднены, поэтому следует изучить энергопотенциал конкретной местности, если существует подозрение, что ветрогенератор может быть эффективен.

Основная проблема ветровых станций заключается в том, что их эффективность мала при низких скоростях ветра. Если внимательно посмотреть на кривую зависимости мощности от скорости ветра, то можно обнаружить следующее: стартовая скорость большинства современных ВЭУ располагаться в пределах 3 — 4 м/с. Но необходимо, чтоб ветровой поток продержался на этом уровне не наименее 10 мин, лишь тогда автоматика даст позволение на запуск ВЭУ. При этом более-менее ощутимая, выработка энергии начнется только при 7 метрах в секунду, а ВЭУ, трудящаяся при средней скорости 6 м/с, генерирует емкость на 44 % большую, чем при скорости 5 м/с…

Многие хотят уменьшить начальную скорость ветра при котором начинается вращаться турбина до 1-2 м/с — мол слабый ветер бывает всегда и пусть в аккумуляторы всегда что-то «капает». Однако, при такой скорости ветер имеет ОЧЕНЬ мало энергии. Если ветрогенератор и вся система рассчитаны на 3-5кВт, то 5-10 Вт не решат никаких проблем.

Перейдем теперь к методам расчета систем с ветряными электростанциями. Покупая устройство, вы будете знать его заявленную номинальную мощность, а также найдете в инструкции график зависимости мощности вырабатываемой «ветряком» от скорости ветра.

Из формулы P=( η*КИЭВ* ρ*V 3 *π*D 2 )/8 видно, что мощность ветрового потока пропорциональна кубу скорости ветра и квадрату диаметра колеса турбины. Это означает, что при увеличении скорости ветра вдвое, мощность потока возрастет в 8 раз, а при увеличении длины лопастей вдвое, мощность ветрогенератора возрастет в 4 раза.

В таблице приведены величины мощности ветровой турбины, в зависимости от скорости ветра и диаметра колеса турбины. Коэффициент эффективности турбины k = 0,25.

V м/с 3 4 5 6 7 8 9 10 11
P Вт d = 1м 3 8 15 27 42 63 90 122 143
P Вт d = 2м 13 31 61 107 168 250 357 490 650
P Вт d = 3м 30 71 137 236 376 564 804 1102 1467
P Вт d = 4м 53 128 245 423 672 1000 1423 1960 2600
P Вт d = 5м 83 196 383 662 1050 1570 2233 3063 4076
P Вт d = 6м 120 283 551 953 1513 2258 3215 4410 5866
P Вт d = 7м 162 384 750 1300 2060 3070 4310 6000 8000
P Вт d = 8м 212 502 980 1693 2689 4014 5715 7840 10435
P Вт d = 9м 268 635 1240 2140 3403 5080 7230 9923 13207
P Вт d = 10м 331 784 1531 2646 4200 6270 8930 12250 16300

Вы видите, как сильно возрастает величина мощности ветрового потока при увеличении скорости ветра только на 1 м/с.

Прежде чем звонить в компанию занимающуюся продажей ветрогенераторных установок надо узнать две цифры:

1) Потребление электроэнергии в месяц в киловатт-часах — все платят за электричество в квартирах или домах ежемесячно и эта цифра поможет оценить Ваши потребности.

Можно эту цифру посчитать примерно и самому, например:

1. Лампочка (сразу лучше меняйте на энергосберегающие или LED) — 20Вт — эквивалент 100Вт обычной (1кВт — это 1000Вт, то есть 20Вт — это 0,02кВт) горит 5 часов в день, поэтому мощность в кВт умножаем на часы работы в месяц — 0,02 * 5 * 30(дней в месяце) = 3кВт*часа в месяц.

Читайте также:  Решить задачу по физике мощность двигателя

2. Холодильник 300Вт, работает примерно 30% времени, то есть 8 часов в сутки — 0,3 * 8 * 30 = 72кВт*часа в месяц.

3. Электрочайник 1,5 кВт, работает 0,5 часа в день — 1,5 * 0,5 *30 = 22,5кВт*часа в месяц

И так далее по всем приборам.

Потом всё суммируете — 3 + 72 + 22,5 = 97,5кВт*час в месяц.

Это и есть месячное потребление — примерно 100кВт*час в месяц в данном примере.

2) Среднегодовая скорость ветра в предполагаемом месте установки — её можно приблизительно узнать в ближайшей метеостанции.

Для выбора инвертора надо знать максимальную (пиковую) мощность потребления электроприборов с небольшим запасом — по ней выбирается его мощность. При наличии этих показателей можно быстро и грамотно подобрать необходимое оборудование, обратившись к продающей его организации.

При выборе оборудования не стоит опираться на мощность ветрогенератора — она сильно зависит от скорости ветра. Это только в бензогенераторе она соответствует указанной в паспорте. 5кВт ветрогенератор при слабом ветре (3-4м/с) выдаёт всего 0,1-0,2 кВт.

Очень часто покупатель ориентируется на максимальную (пиковую) мощность своего потребления и просит постоянно эту мощность — например 5кВт, как в бензогенераторе, например — начинаем разбираться, считать — и оказывается, что для лампочек, холодильника, телевизора и насоса вполне хватает 0,5кВт постоянной мощности — а это две большие разницы. Оценивать своё электропотребление нужно только по киловатт — часам в месяц.

Но и не стоит определять среднюю выдаваемую ветрогенератором мощность по среднегодовой скорости ветра — это будет намного заниженная цифра.

Существует атлас ветров России, в котором есть данные по ветру в 332 метеостанциях. «Роза ветров» так часто употребляемая обывателем в данной теме к ней относится «поскольку-постольку» — это статистика по направлениям ветра, а ветрогенератору всё равно — как часто с какой стороны дует. А вот при определении места установки ветрогенератора «Розу ветров» лучше учитывать, чтобы на направлении основных ветров не оказались высокие строения, деревья и прочие препятствия.

Выбор мачты

Какую мачту выбрать — с растяжками или без?

Если место позволяет, то лучше ставить мачту с растяжками — она будет стоить в 3-5 раз дешевле мачты без растяжек. В настоящее время накоплен уже довольно богатый опыт установки мачт для ветрогенераторов на территории РФ и он позволяет утверждать об этом однозначно.

Иногда предлагают телескопические мачты — они удобны при частых подъёмах и опусканиях, в чём нет особой необходимости при использовании с ветрогенератором. Мощный ветряк на неё не поставишь — не более 1-2кВт, зато стоить она будет намного дороже.

Какой высоты должна быть мачта?

При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.

  • Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
  • Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
  • Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.

Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.

Конечно, чем выше мачта, тем лучше (чем больше высота — тем сильнее ветер, прямая зависимость), но не всегда более высокая мачта технически или экономически оправдывает себя. Посоветуйтесь со специалистом — обычно простого описания по телефону будет достаточно для определения оптимальной высоты мачты. При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.

  • Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
  • Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
  • Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.

Высота мачты практически не зависит от мощности ветрогенератора (от 1 до 10кВт). Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.

Читайте также:  Коэф мощности люминесцентных ламп

Все вышесказанное относится к мачтам для ветровых генераторов с горизонтальной осью вращения. Для ветровых генераторов с вертикальной осью вращения при выборе мачты существуют свои резоны, в данной статье не рассматриваемые.

  1. Главная
  2. Ветровые генераторы
  3. Расчет выработки энергии ветрогенераторной станцией

Источник

Ветрогенератор своими руками: расчет винта и генератора переменного тока

Расчет ветроколеса и генератора переменного тока для домашней ВЭУ. Варианты конструктивного исполнения – опыт пользователей портала.

Продолжая тему, посвященную ветроэнергетике в домашнем хозяйстве, считаем своим долгом рассказать о конструкции ветрогенератора – ключевого элемента системы. Статья ориентирована на тех, кто планирует собирать «сердце» ветроэнергетической установки своими руками.

Судя по опыту пользователей FORUMHOUSE, которые не привыкли искать легких путей, сборка ветрогенератора своими силами – задача, вполне осуществимая. И первое, что необходимо выполнить для ее успешной реализации – это правильно рассчитать основные элементы установки.

Для того чтобы основные моменты, представленные в настоящей статье, были вам понятны, рекомендуем ознакомиться с материалами, изложенными в ее первой и второй частях.

Из статьи вы узнаете:

  • Как правильно рассчитывать рабочий винт ветрогенератора.
  • Какие типы генераторов больше всего подходят для сборки в домашних условиях.
  • Как рассчитывать рабочие характеристики генератора переменного тока.

Расчет рабочего винта (ветроколеса)

Преобразование механической энергии воздушного потока в энергию электрическую начинается с рабочего винта. Поэтому методику расчета ветроколеса мы рассмотрим в первую очередь. Сделаем это на примере наиболее распространенного трехлопастного винта с горизонтальной осью вращения.

Ключевое правило, которого следует придерживаться, осуществляя расчет ветряка, заключается в следующем: мощность ветрового потока, которую можно снять с рабочих лопастей устройства, должна соответствовать электрической мощности самого генератора. Объясним почему: если мощность винта будет слишком малой, то даже при сильном ветре винт не сможет стронуть с места ротор генератора, находящегося под нагрузкой. Если же, наоборот, винт окажется слишком мощным для генератора, то при сильном ветре он раскрутит ротор до очень высоких оборотов, что неизбежно приведет к разрушению всей установки.

Учитывая этот момент, рассмотрим порядок расчета трехлопастного винта в соответствии с заданными характеристиками генератора. Предположим, что у вас уже есть генератор, с номинальной мощностью 300 Вт*ч (к примеру). Также представим, что свои номинальные характеристики устройство будет демонстрировать при оборотах ротора – 150 об/мин. Если средняя скорость ветра в вашей местности составляет 6 м/сек, то на нее и следует ориентироваться, осуществляя дальнейшие расчеты.

Далее: генератор переменного тока, на который ветроколесо передает вращательный момент, имеет свой собственный КПД (0,6…0,8). При различных условиях эксплуатации данный показатель может опускаться до более низких значений, поэтому в качестве примера возьмем КПД, равный 50%.

Для того чтобы устройство, обладающее подобным КПД, выдало необходимые 300 Вт*ч электрической мощности, на его ротор необходимо подать мощность, в два раза превышающую ту, которую требуется с него снять. То есть, механическая мощность, передаваемая на генератор с ветроколеса, должна быть равна 600 Вт.

Средний КИЭВ (коэффициент использования энергии ветра) у трехлопастных винтов равен 0,4 (это и будет КПД ветроколеса). Следовательно, мощность ветра (Х), которая должна воздействовать на рабочие лопасти ветряка (чтобы снять с них 600 Вт), можно вычислить, решив уравнение:

Х = 600:0,4 = 1500 Ватт.

Итак, количество необходимой энергии нам известно, теперь рассчитаем площадь, ометаемую рабочими лопастями ветроколеса (S).

dim_on_art Пользователь FORUMHOUSE

Вот нашел формулу: P = 0,5 *Q * S * V³ * Cp * Ng

  • P – мощность (Вт);
  • Q – плотность воздуха (1,23 кг/м³);
  • S – площадь ометания ветроколеса (м²);
  • V – скорость ветра (м/с);
  • CP – коэффициент использования энергии ветра (0,35…0,45);
  • Ng – КПД генератора;

Плотность воздуха – неизменна, площадь ометания ротора – тоже.

Эта формула обозначает мощность на выходных клеммах генератора. Учитывая, что значение мощности (1500 Вт) мы изначально взяли с учетом КИЭВ ветроколеса и КПД генератора, последние два значения из формулы убираем.

Мощность ветра, которую воздушный поток передает на ветроколесо, будет равна:

Все значения, входящие в формулу, нам известны (кроме площади – S). Решив простейшее уравнение, получим:

Читайте также:  Видеокарта работает не всю мощность

S = 1500/0,5*1,23*6³ = 11,292 м²

Площадь круга вычисляется по формуле:

где π – математическая константа (3,14), а r² – квадрат радиуса окружности ветроколеса.

В нашем случае r² = 11,292/3,14 = 3,596.

Следовательно, радиус ветроколеса будет равен 1,89 м, а его диаметр – 3,78 м.

Теперь необходимо удостовериться в том, что такое ветроколесо сможет при ветре – 6 м/с развить достаточное количество оборотов. В этом нам поможет коэффициент быстроходности ветряка – Z (у трехлопастных устройств Z=5).

Окружная (концевая) скорость лопастей ветряка с коэффициентом быстроходности Z5 будет равна произведению коэффициента (Z) на скорость ветра (6*5=30 м/с). Периметр ветроколеса диаметром 3,78 метра равен 11,87 м (L=2πr). Это длина его окружности по внешнему диаметру лопастей, то есть, расстояние, которое конец каждой лопасти проходит за один оборот. Следовательно, за секунду каждая лопасть сделает 2,53 оборота (30 м/с делим на 11,87 м) или 151 оборот за минуту. Что нам и требовалось.

Для того чтобы увеличить обороты, мы можем уменьшить диаметр ветроколеса, но мощность винта в этом случае снизится.

Netbyka Пользователь FORUMHOUSE

Уменьшение диаметра ветроколеса должно давать увеличение оборотов. Его можно уменьшать до тех пор, пока мощности винта будет хватать для прокручивания генератора под нагрузкой. Это и будут оптимальные параметры.

Мы представили вашему вниманию методику «грубого» расчета ветроколеса, основанную на характеристиках генератора и существующих потребностях в альтернативной электроэнергии.

Учитывая, что большой ветряк и построить сложно, и обслуживать – непросто, конструкцию рабочего винта можно рассчитать под конкретные условия эксплуатации (добавляя или уменьшая количество лопастей, а также меняя при этом их длину). Это поможет изменить коэффициент быстроходности, а, следовательно, и количество оборотов. Также при недостаточном количестве оборотов мощные ветрогенераторы (особенно многолопастные – тихоходные) оснащаются дополнительным редуктором-мультипликатором.

BOB691774 Пользователь FORUMHOUSE

При малых скоростях вращения ротора выработки электроэнергии нет вообще. Мультипликатор решает эту проблему даже при малых оборотах.

Как бы мастер ни старался, самодельный ветрогенератор всегда будет далек от совершенства: самодельные лопасти, самодельные катушки – при изготовлении всего этого трудно соблюсти рекомендуемые аэродинамические и электротехнические параметры. И если в теории мы рассчитали, что ветроколесо диаметром 3,78 метра (при ветре 6 м/с) позволит получить нам 300 Вт*ч электроэнергии, на практике этот показатель можно смело уменьшить на 30%. Этим самым мы на стадии расчетов учтем недостатки кустарной сборки и возможные потери мощности.

Расчет генератора

Рассмотрим последовательность расчета трехфазного генератора переменного тока на постоянных магнитах. Трехфазные генераторы получили значительно более широкое распространение (нежели однофазные) за счет своих характеристик: отсутствие сильных вибраций и гула во время работы, улучшенные характеристики по мощности, току и т. д.

Мощность генератора зависит от целого ряда факторов: скорость вращения, величина магнитной индукции, количество витков на обмотках статора и т. д. Также она напрямую зависит от величины ЭДС генератора, которая определяется по формуле:

  • E – ЭДС (В);
  • B – величина магнитной индукции (Тс);
  • V – линейная скорость движения магнитов (м/с) – произведение длины окружности ротора на количество оборотов;
  • L – активная длина проводника (м), которую перекрывают магниты генератора.

Среднее значение индукции постоянных магнитов, используемых в составе генераторов переменного тока, равно 0.8 Тл. Его можно смело применять во время осуществления предварительных расчетов.

Если генератор изготавливается на основе неодимовых магнитов, величина магнитной индукции будет выше (от 1 до 1,4 Тл).

Рассмотрим последовательность предварительного расчета трехфазного аксиального генератора, пользуясь примером, который предложил один из пользователей FORUMHOUSE.

Хиттч Пользователь FORUMHOUSE

Вот, что я имею: 24 магнита (неодимовые) толщиной – 5 мм, шириной – 9.5 мм, длиной – 20 мм. Имею среднегодовую скорость ветра – 5 м/сек. Планирую сделать два ротора – по 12 магнитов на роторе (то есть – 12 полюсов). Соотношение полюсов и катушек – 2/3 (на каждые 2 полюса идет 3 катушки). Получаем 12 полюсов и 18 катушек (по 12 магнитов на каждом диске ротора). Ветроколесо выбрал диаметром 2 метра (двухлопастное). Его быстроходность – Z7. При ветре 5 м/с ветряк должен развивать 334 об/мин (334/60= 5,6 об/сек).

Источник