Меню

Как определить мощность при вращательном движении



Мощность при вращательном движении

Если вал машины передает скручивающий момент Мх, например, от мотора к станку, то значение момента зависит от передаваемой мощности Р и частоты вращения вала. Учитывая, что мощность равна работе в единицу времени 1Вт = 1Нм/с, можно составить равенство

где Р – мощность, Вт(кВт);

ω угловая скорость, 1/с: .

Тогда скручивающий момент Мх определится по формуле

где n – число оборотов в минуту, об /мин.

Пример 8

Шкив с диаметром D 1= 1м и с углом наклона ветвей ремня к горизонту

α 1 = 0 o , делает n = 100 об/мин и передаёт мощность P = 100 кВт. Два других шкива имеют одинаковый диаметрD 2= 0,8 м и одинаковые углы наклона ветвей ремней к горизонту α 2 = 60° и каждый из них передает мощность (риcунок 32, а). Соотношения сил натяжения ремней для шкивов соответственно равны: Т1 = 2t 1 , Т2 = 2t 2 (риcунок 32, з). Требуется подобрать диаметр вала d , если допускаемое напряжение материала вала [ σ ] = 100 МПа..

Скручивающие моменты, действующие на вал со стороны шкивов, будут вызывать деформацию кручения вала, а вследствие действия сил натяжения ремней шкивов вал будет подвержен также и деформациям изгиба в вертикальной и горизонтальной плоскостях.

Определяем внешние скручивающие моменты Mк1 и Mк2, вызывающие кручение вала:

Строим эпюру крутящих моментов Mк (риcунок 32, б).

Определим натяжение ремней t 1 , Т1 = 2t 1 , t 2 , Т2 = 2t 2 :

Находим результирующие сосредоточенные силы F1 , F2 :

F1 = (t1 + Т1) = (19,1 + 38,2) = 57,3 кН

F2 = (t2 + Т2) = (12,2 + 24,4) = 36,6 кН

Проектируем силы натяжения ремней F1 и F2, действующие в плос­кости каждого шкива, на оси y и z (рисунок 32, з).

F1z = (t1 + Т1) ∙ cosα1 = (19,1 + 38,2) ∙ cos0 o = 57,3 кН,

F2у = (t2 + Т2) ∙ sinα2 = (12,2 + 24,4) ∙ sin 60 o = – 31,7 кН,

F2z = (t2 + Т2) ∙ cosα2 = (12,2 + 24,4) ∙ cos60 o = –18,3 кН.

Расчетная схема вала на изгиб в вертикальной плоскости представлена на

рисунке 32, в.

Строим эпюру изгибающих моментов в вертикальной плоскости

(рисунок 32, г.).

Расчетная схема вала на изгиб в горизонтальной плоскости представлена

на рисунке 32, д.

Строим эпюру изгибающих моментов в горизонтальной плоскости

(рисунок 32, е).

Строим эпюру суммарных изгибающих моментов Миэг (рисунок 32, ж),

Определяем эквивалентный изгибающий момент Мэкв по третьей теории

Опасным сечением вала будем сечение, где расположен шкив с диаметром D 1

Определяем диаметр вала d из условия прочности

где осевой момент сопротивления .

Следовательно: мм =15,8 см.

Принимаем диаметр вала d =16 см.

Рисунок 32 − Расчет вала на кручение с изгибом

Задача 10

| следующая лекция ==>
Расчет статически неопределимой балки | Сложное сопротивление. Кручение и изгиб

Дата добавления: 2019-07-26 ; просмотров: 623 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Читайте также:  Как по известной мощности определить работу

Источник

Мощность при вращательном движении

Учитывая, что = ср; получим Р = М ср ср, ср – средняя скорость.

Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.

Если при выполнении работы усилие машины и скорость движения меняются , можно определить мощность в любой момент времени, зная значения усилия и скорости в данный момент.

Коэффициент полезного действия

Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений.

Таким образом, машина кроме полезной работы совершает еще и дополнительную работу.

Отношение полезной работы к полной работе или полезной мощности ко всей затраченной мощности называется коэффициентом полезного действия (КПД).

Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечку и тому подобные потери.

Чем выше КПД, тем совершеннее машина.

Пример решения задачи

Судно движется со скоростью 56 км / ч. Двигатель развивает мощность 1200 кВт. Определить силу сопротивления воды движению судна.

1. Определяем полезную мощность, используемую на движение с заданной скоростью:

P = Fдв v cos α

η = ; P = Pмотора η

2. По формуле для полезной мощности можно определить движущую

силу судна с учетом условия α = 0. При равномерном движении движущая сила равна силе сопротивления воды: Fдв = Fсопр

3. Скорость движения судна v = =10 м/с

4. Сила сопротивления воды

Fсопр = ; Fсопр = = 48 000 Н.

Сила сопротивления воды движению судна Fсопр = 48 000 Н.

Дата добавления: 2020-12-22 ; просмотров: 36 ; Мы поможем в написании вашей работы!

Источник

Теоретическая механика:
Работа и мощность. Коэффициент полезного действия

Смотрите также решения задач по теме «Работа и мощность» в онлайн решебнике Мещерского.

В этой главе рассмотрены задачи на определение работы, совершаемой постоянной силой, и развиваемой мощности при поступательном и вращательном движении тел (Е. М. Никитин, § 81–87).

§ 44. Работа и мощность при поступательном движении

Работа постоянной силы P на прямолинейном участке пути s, пройденном точкой приложения силы, определяется по формуле
(1) A = Ps cos α,
где α – угол между направлением действия силы и направлением перемещения.

При α = 90°
cos α = cos 90° = 0 и A = 0,
т. е. работа силы, действующей перпендикулярно к направлению перемещения, равна нулю.

Если направление действия силы совпадает с направлением перемещения, то α = 0, поэтому cos α = cos 0 = 1 и формула (1) упрощается:
(1′) A = Ps.

На точку или на тело обычно действует не одна сила, а несколько, поэтому при решении задач целесообразно использовать теорему о работе равнодействующей системы сил (Е. М. Никитин, § 83):
(2) AR = ∑ Ai,
т. е. работа равнодействующей какой-либо системы сил на некотором пути равна алгебраической сумме работ всех сил этой системы на том же пути.

Читайте также:  Мощностью менее 55 киловатт

В частном случае, когда система сил уравновешена (тело движется равномерно и прямолинейно), равнодействующая системы сил равна нулю и, следовательно, AR=0. Поэтому при равномерном и прямолинейном движении точки или тела уравнение (2) принимает вид
(2′) ∑ Ai = 0,
т. е. алгебраическая сумма работ уравновешенной системы сил на некотором пути равна нулю.

При этом силы, работа которых положительна, называются движущими, а силы, работа которых отрицательна, называются силами сопротивления. Например, при движении тела вниз – сила тяжести – движущая сила и ее работа положительна, а при движении тела вверх его сила тяжести является силой сопротивления и работа силы тяжести при этом отрицательна.

При решении задач в случаях, когда неизвестна сила Р, работу которой нужно определить, можно рекомендовать два приема (метода).

1. При помощи сил, заданных в условии задачи, определить силу P, а затем по формуле (1) или (1′) вычислить ее работу.

2. Не определяя непосредственно силы P, определить Ap – работу требуемой силы при помощи формул (2) и (2′), выражающих теорему о работе равнодействующей.

Мощность, развиваемая при работе постоянной силы, определяется по формуле
(3) N = A/t или N = (Ps cos α)/t.

Если при определении работы силы Р скорость движения точки v=s/t остается постоянной, то
(3′) N = Pv cos α.

Если же скорость движения точки изменяется, то s/t = vср – средняя скорость и тогда формула (2′) выпажает среднюю мощность
Nср = Pvср cos α.

Коэффициент полезного действия (к. п. д.) при совершении работы можно определить как отношение работ
(4) η = Aпол/A,
где Aпол – полезная работа; A – вся произведенная работа, или как отношение соответствующих мощностей:
(4′) η = Nпол/N.

Единицей работы в СИ служит 1 джоуль (Дж) = 1 Н * 1 м.

Единицей мощности в СИ служит 1 ватт (Вт) = 1 Дж / 1 сек.

Популярной внесистемной единицей мощности является лошадиная сила (л. с.):
1000 Вт = 1,36 л. с. или 1 л. с. = 736 Вт.

Для перехода между ваттами и лошадиными силами следует пользоваться формулами
N (кВт) = 1,36 N (л. с.)
N (л. с.) = 0,736 N (кВт).

§ 45. Работа и мощность при вращательном движении

При вращательном движении тела движущим фактором является пара сил. Рассмотрим диск 1, могущий свободно вращаться вокруг оси 2 (рис. 259). Если к точке A на ободе диска приложить силу P (направим ее вдоль касательной к боковой поверхности диска; направленная таким образом сила называется окружным усилием), то диск станет вращаться. Вращение диска обусловлено появлением пары сил. Сила P, действуя на диск, прижимает его в точке O к оси (сила Pдавл на рис. 259, приложенная к оси 2) и возникает реакция оси (сила Pркц на рис. 259), приложенная так же, как и сила P, к диску. Так как все эти силы численно равны между собой и линии их действия параллельны, то силы P и Pркц образуют пару сил, которая и приводит диск во вращение.

Читайте также:  Расчет мощности ампер киловатт

Как известно, вращающее действие пары сил измеряется ее моментом, но момент пары сил равен произведению модуля любой из сил на плечо пары, поэтому вращающий момент
Mвр = Mпары = MOP = P*OA.

Единицей момента пары сил, а также момента силы относительно точки или относительно оси является 1 Н*м (ньютон-метр) в СИ и 1 кГ*м (килограмм-сила-метр) в системе МКГСС. Но при этом не следует смешивать эти единицы с единицами работы (1 Н*м=1 Дж или 1 кГ*м), имеющими ту же размерность.

Работу при вращательном движении производят пары сил.

Величина работы пары сил измеряется произведением момента пары (вращающего момента) на угол поворота, выраженный в радианах:
(1) A = Mврφ.

Таким образом, чтобы получить единицу работы, например, 1 Дж=1 Н*м, необходимо единицу момента 1 Н*м умножить на 1 рад. Но так как радиан – безразмерная величина
[радиан] = [длина дуги/радиус] = [м/м] = [1],
то
[Дж] = [Н*м] * [1] = [Н*м].

Мощность при вращательном движении
(2) N = A/t = Mврφ/t.

Если тело вращается с постоянной угловой скоростью, то, заменив в формуле (2) φ/t = ω, получим
(2′) N = Mврω.

Если мощность того или иного двигателя – величина постоянная, то
(3) Mвр = N/ω,
т. е. вращающий момент двигателя обратно пропорционален угловой скорости его вала.

Это означает, что использование мощности двигателя при различных угловых скоростях позволяет изменять создаваемый им вращающий момент. Используя мощность двигателя при малой угловой скорости, можно получить большой вращающий момент.

Так как угловая скорость вращающейся части двигателя (ротора электродвигателя, коленчатого вала двигателя внутреннего сгорания и т. п.) при его работе практически не изменяется, то между двигателем и рабочей машиной устанавливается какой-либо механизм (редуктор, коробка скоростей и т. п.), могущий передавать мощность двигателя при различных угловых скоростях.

Поэтому формула (3), выражающая зависимость вращающего момента от передаваемой мощности и угловой скорости, имеет очень важное значение.

Используя при решении задач эту зависимость, необходимо иметь в виду следующее. Формула (3) применяется для решения задач, если мощность N задана в ваттах, а угловая скорость ω – в рад/сек (размерность [1/сек]), тогда вращающий момент Mвр получится в Н*м.

Источник

Как определить мощность при вращательном движении



Мощность при вращательном движении

Учитывая, что = ср; получим Р = М ср ср, ср – средняя скорость.

Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.

Если при выполнении работы усилие машины и скорость движения меняются , можно определить мощность в любой момент времени, зная значения усилия и скорости в данный момент.

Коэффициент полезного действия

Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений.

Таким образом, машина кроме полезной работы совершает еще и дополнительную работу.

Отношение полезной работы к полной работе или полезной мощности ко всей затраченной мощности называется коэффициентом полезного действия (КПД).

Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечку и тому подобные потери.

Чем выше КПД, тем совершеннее машина.

Пример решения задачи

Судно движется со скоростью 56 км / ч. Двигатель развивает мощность 1200 кВт. Определить силу сопротивления воды движению судна.

1. Определяем полезную мощность, используемую на движение с заданной скоростью:

P = Fдв v cos α

η = ; P = Pмотора η

2. По формуле для полезной мощности можно определить движущую

силу судна с учетом условия α = 0. При равномерном движении движущая сила равна силе сопротивления воды: Fдв = Fсопр

3. Скорость движения судна v = =10 м/с

4. Сила сопротивления воды

Fсопр = ; Fсопр = = 48 000 Н.

Сила сопротивления воды движению судна Fсопр = 48 000 Н.

Дата добавления: 2020-12-22 ; просмотров: 33 ; Мы поможем в написании вашей работы!

Источник

Теоретическая механика:
Работа и мощность. Коэффициент полезного действия

Смотрите также решения задач по теме «Работа и мощность» в онлайн решебнике Мещерского.

В этой главе рассмотрены задачи на определение работы, совершаемой постоянной силой, и развиваемой мощности при поступательном и вращательном движении тел (Е. М. Никитин, § 81–87).

§ 44. Работа и мощность при поступательном движении

Работа постоянной силы P на прямолинейном участке пути s, пройденном точкой приложения силы, определяется по формуле
(1) A = Ps cos α,
где α – угол между направлением действия силы и направлением перемещения.

Читайте также:  Subaru как повысить мощность

При α = 90°
cos α = cos 90° = 0 и A = 0,
т. е. работа силы, действующей перпендикулярно к направлению перемещения, равна нулю.

Если направление действия силы совпадает с направлением перемещения, то α = 0, поэтому cos α = cos 0 = 1 и формула (1) упрощается:
(1′) A = Ps.

На точку или на тело обычно действует не одна сила, а несколько, поэтому при решении задач целесообразно использовать теорему о работе равнодействующей системы сил (Е. М. Никитин, § 83):
(2) AR = ∑ Ai,
т. е. работа равнодействующей какой-либо системы сил на некотором пути равна алгебраической сумме работ всех сил этой системы на том же пути.

В частном случае, когда система сил уравновешена (тело движется равномерно и прямолинейно), равнодействующая системы сил равна нулю и, следовательно, AR=0. Поэтому при равномерном и прямолинейном движении точки или тела уравнение (2) принимает вид
(2′) ∑ Ai = 0,
т. е. алгебраическая сумма работ уравновешенной системы сил на некотором пути равна нулю.

При этом силы, работа которых положительна, называются движущими, а силы, работа которых отрицательна, называются силами сопротивления. Например, при движении тела вниз – сила тяжести – движущая сила и ее работа положительна, а при движении тела вверх его сила тяжести является силой сопротивления и работа силы тяжести при этом отрицательна.

При решении задач в случаях, когда неизвестна сила Р, работу которой нужно определить, можно рекомендовать два приема (метода).

1. При помощи сил, заданных в условии задачи, определить силу P, а затем по формуле (1) или (1′) вычислить ее работу.

2. Не определяя непосредственно силы P, определить Ap – работу требуемой силы при помощи формул (2) и (2′), выражающих теорему о работе равнодействующей.

Мощность, развиваемая при работе постоянной силы, определяется по формуле
(3) N = A/t или N = (Ps cos α)/t.

Читайте также:  Потребляемая мощность mitsubishi electric

Если при определении работы силы Р скорость движения точки v=s/t остается постоянной, то
(3′) N = Pv cos α.

Если же скорость движения точки изменяется, то s/t = vср – средняя скорость и тогда формула (2′) выпажает среднюю мощность
Nср = Pvср cos α.

Коэффициент полезного действия (к. п. д.) при совершении работы можно определить как отношение работ
(4) η = Aпол/A,
где Aпол – полезная работа; A – вся произведенная работа, или как отношение соответствующих мощностей:
(4′) η = Nпол/N.

Единицей работы в СИ служит 1 джоуль (Дж) = 1 Н * 1 м.

Единицей мощности в СИ служит 1 ватт (Вт) = 1 Дж / 1 сек.

Популярной внесистемной единицей мощности является лошадиная сила (л. с.):
1000 Вт = 1,36 л. с. или 1 л. с. = 736 Вт.

Для перехода между ваттами и лошадиными силами следует пользоваться формулами
N (кВт) = 1,36 N (л. с.)
N (л. с.) = 0,736 N (кВт).

§ 45. Работа и мощность при вращательном движении

При вращательном движении тела движущим фактором является пара сил. Рассмотрим диск 1, могущий свободно вращаться вокруг оси 2 (рис. 259). Если к точке A на ободе диска приложить силу P (направим ее вдоль касательной к боковой поверхности диска; направленная таким образом сила называется окружным усилием), то диск станет вращаться. Вращение диска обусловлено появлением пары сил. Сила P, действуя на диск, прижимает его в точке O к оси (сила Pдавл на рис. 259, приложенная к оси 2) и возникает реакция оси (сила Pркц на рис. 259), приложенная так же, как и сила P, к диску. Так как все эти силы численно равны между собой и линии их действия параллельны, то силы P и Pркц образуют пару сил, которая и приводит диск во вращение.

Как известно, вращающее действие пары сил измеряется ее моментом, но момент пары сил равен произведению модуля любой из сил на плечо пары, поэтому вращающий момент
Mвр = Mпары = MOP = P*OA.

Читайте также:  То 142 регулятор мощности

Единицей момента пары сил, а также момента силы относительно точки или относительно оси является 1 Н*м (ньютон-метр) в СИ и 1 кГ*м (килограмм-сила-метр) в системе МКГСС. Но при этом не следует смешивать эти единицы с единицами работы (1 Н*м=1 Дж или 1 кГ*м), имеющими ту же размерность.

Работу при вращательном движении производят пары сил.

Величина работы пары сил измеряется произведением момента пары (вращающего момента) на угол поворота, выраженный в радианах:
(1) A = Mврφ.

Таким образом, чтобы получить единицу работы, например, 1 Дж=1 Н*м, необходимо единицу момента 1 Н*м умножить на 1 рад. Но так как радиан – безразмерная величина
[радиан] = [длина дуги/радиус] = [м/м] = [1],
то
[Дж] = [Н*м] * [1] = [Н*м].

Мощность при вращательном движении
(2) N = A/t = Mврφ/t.

Если тело вращается с постоянной угловой скоростью, то, заменив в формуле (2) φ/t = ω, получим
(2′) N = Mврω.

Если мощность того или иного двигателя – величина постоянная, то
(3) Mвр = N/ω,
т. е. вращающий момент двигателя обратно пропорционален угловой скорости его вала.

Это означает, что использование мощности двигателя при различных угловых скоростях позволяет изменять создаваемый им вращающий момент. Используя мощность двигателя при малой угловой скорости, можно получить большой вращающий момент.

Так как угловая скорость вращающейся части двигателя (ротора электродвигателя, коленчатого вала двигателя внутреннего сгорания и т. п.) при его работе практически не изменяется, то между двигателем и рабочей машиной устанавливается какой-либо механизм (редуктор, коробка скоростей и т. п.), могущий передавать мощность двигателя при различных угловых скоростях.

Поэтому формула (3), выражающая зависимость вращающего момента от передаваемой мощности и угловой скорости, имеет очень важное значение.

Используя при решении задач эту зависимость, необходимо иметь в виду следующее. Формула (3) применяется для решения задач, если мощность N задана в ваттах, а угловая скорость ω – в рад/сек (размерность [1/сек]), тогда вращающий момент Mвр получится в Н*м.

Источник