Меню

Как определить какая мощность требуется



Калькулятор мощности – расчет по току, напряжению, сопротивлению

С помощью калькулятора мощности вы можете самостоятельно выполнить расчет мощности по току и напряжению для однофазных (220 В) и трехфазных сетей (380 В). Программа также рассчитывает мощность через сопротивление и напряжение, или через ток и сопротивление согласно закону Ома. Значение cos φ принимается согласно указаниям технического паспорта прибора, усредненным значениям таблиц ниже или рассчитываются самостоятельно по формулам. Без необходимости рекомендуем не изменять коэффициент и оставлять равным 0.95. Чтобы получить результат расчета, нажмите кнопку «Рассчитать».

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета мощности

Мощность — это физическая величина, равная отношению количества работы ко времени совершения этой работы.
Мощность электрического тока (P) — это величина, характеризующая скорость преобразования электрической энергии в другие виды энергии. Международная единица измерения — Ватт (Вт/W).

— Мощность по току и напряжению (постоянный ток): P = I × U
— Мощность по току и напряжению (переменный ток однофазный): P = I × U × cos φ
— Мощность по току и напряжению (переменный ток трехфазный): P = I × U × cos φ × √3
— Мощность по току и сопротивлению: P = I 2 × R
— Мощность по напряжению и сопротивлению: P = U 2 / R

  • I – сила тока, А;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Расчет мощности (закон Ома)

Расчет косинуса фи (cos φ)

φ – угол сдвига между фазой тока и напряжения, причем если последний опережает ток сдвиг считается положительным, если отстает, то отрицательным.

cos φ – безразмерная величина, которая равна отношению активной мощности к полной и показывает насколько эффективно используется энергия.

Формула расчета косинуса фи: cos φ = S / P

  • S – полная мощность, ВА (Вольт-ампер);
  • P – активная мощность, Вт.

Активная мощность (P) — реальная, полезная, настоящая мощность, эта нагрузка поглощает всю энергию и превращает ее в полезную работу, например, свет от лампочки. Сдвиг по фазе отсутствует.

Формула расчета активной мощности: P (Вт) = I × U × cos φ

Реактивная мощность (Q) — безваттная (бесполезная) мощность, которая характеризуется тем, что не участвует в работе, а передается обратно к источнику. Наличие реактивной составляющей считается вредной характеристикой цепи, поскольку главная цель существующего электроснабжения — это сокращение издержек, а не перекачивание ее туда и обратно. Такой эффект создают катушки и конденсаторы.

Читайте также:  Удельная мощность светового потока это

Формула расчета реактивной мощности: P (ВАР) = I × U × sin φ

Полная мощность электроприбора (S) — это суммарная величина, которая включает в себе как активную, так и реактивную составляющие мощности.

Формула расчета полной мощности: S (ВА) = I × U или S = √( P 2 + Q 2 )

Источник

Как определить потребляемую мощность электроприбора?

Электричество в массовом масштабе используется во всех сферах современной жизни. Необходимая эксплуатационная гибкость электросети обеспечивается использованием розеток к которым подключаются те или иные приборы. Мощность подключаемого устройства не должна превышать определенного максимального значения.

Что такое потребляемая мощность?

Потребляемая мощность — это численная мера количества электрической энергии, необходимой для функционирования электроприбора или преобразуемой им в процессе функционирования. Для статических устройств (плита, утюг, телевизор, осветительные приборы) энергия тока при работе переходит в тепло). При преобразовании (электродвигатели) – энергия электрического тока преобразуется в механическую энергию.

Основная единица электрической мощности – Ватт, ее численное значение

где U – напряжение, Вольты, I – ток, амперы.

Иногда этот параметр указывают в В×А (V×А у импортной техники), что более правильно для переменного тока. Разница между Ваттами и В×А для бытовых сетей мала и ее можно не учитывать.

Потребляемая электрическая мощность важна при планировании проводки (от нее зависит сечение проводов, а также выбор номиналов и количество защитных автоматов). При эксплуатации она определяет затраты на содержание жилища.

Проблема правильной эксплуатации бытовой электрической сети

С конструктивной точки зрения бытовая электрическая сеть отработана до высокой степени совершенства: ее нормальная эксплуатация не требует специальных знаний.

Сеть рассчитана на определенные условия эксплуатации, нарушение которых приводит к полному или частичному отказу, а в тяжелых случаях – к возникновению пожара.

Условие правильной эксплуатации – отсутствие перегрузки.

При этом нагрузочная способность розеток и потребление подключаемой к ним техники измеряется различными единицами:

  • для розеток это максимально допустимый переменный ток (6 А у традиционных советских розеток старого жилого фонда, 10 или даже 16 А у розеток европейского стиля);
  • подключаемое оборудование характеризуются мощностью, которая измеряется в Ваттах (для мощных устройств вместо Ватт указываются более крупные единицы: киловатты (1 кВт = 1000 Вт), что позволяет не путаться в многочисленных нулях).

Отсюда возникает необходимость:

  • определения связи мощности и тока;
  • нахождения мощности отдельного электрического прибора.

Связь между Ваттами и Амперами проста и следует прямо из приведенного выше определения Ватта. Задача упрощается тем, что напряжение исправной бытовой сети всегда одинаково (220 или 230 В). Отсюда по току всегда находится мощность.

Читайте также:  Какая мощность нужна для 3 метра светодиодной ленты

Как определить?

Для решения задачи нахождения мощности можно воспользоваться различными способами. Все они доступны для применения даже при знаниях в области физики и электротехники на уровне школьной программы.

Чаще мощность находят через определение тока, иногда можно обойтись без промежуточных процедур и определит ее сразу.

Смотрим в техпаспорт

Обычно потребляемая мощность указывается в паспорте или описании устройства и дублируется на фирменной табличке-шильдике. Последняя находится на задней стенке корпуса или его основании.

В случае отсутствия описания этот параметр можно узнать по интернету, для чего достаточно воспользоваться поиском по названию устройства.

Указываемая производителем техники мощность относится к пиковой и потребляется от сети только при полной нагрузки, что встречается достаточно редко. Образовавшаяся разница рассматривается как запас. На нормативном уровне этот запас определяют через коэффициент мощности.

Закон Ома в помощь

Мощность большинства бытовых электрических устройств можно довольно точно оценить экспериментально-расчетным путем с привлечением известного еще со средней школы закона Ома. Этот эмпирический закон связывает между собой напряжение, ток и сопротивление R нагрузки как:

P = U 2 /R.
U = 230 В, а сопротивление измеряется тестером. Далее следует простой расчет по формуле
P = 48 400/R Вт.

Например, при R = 200 Ом получаем мощность Р = 240 Вт.

Метод не учитывает так называемое реактивное сопротивление прибора, которое создается в первую очередь входными трансформаторами и дросселями, и поэтому получаемая оценка дает некоторое завышение.

Используем электросчетчик

При определении мощности по счетчику можно поступить двумя различными способами. В обоих случаях от бытовой сети должен питаться только тестируемый прибор. Все без исключения остальные потребители должны быть отключены.

При первом подходе для замера мощности привлекается оптический индикатор счетчика, интенсивность вспышек которого пропорциональна потребляемой мощности. Коэффициент пропорциональности указан на лицевой панели в единицах imp/kWh или имп/кВтч, рисунок 1, где imp – количество импульсов (вспышек индикатора) на один киловатт час.

Лицевая панель бытового счетчика электроэнергии с оптическим индикатором

Рисунок 1. Лицевая панель бытового счетчика электроэнергии с оптическим индикатором

После включения исследуемого устройства необходимо начать считать вспышки индикатора на протяжении 15 или 20 минут. Затем полученное значение умножается на 3 или на 4 (при 20- или 15-минутном интервале замера, соответственно) и делится на коэффициент с лицевой панели. Результат выкладки дает мощность прибора в кВт, который в ряде случаев умножением на 1000 удобно перевести в Ватты.

Пример. Для счетчика имеем k = 1600 импульсов на киловатт час. При 20 минутном интервале замера индикатор сработал (вспыхнул) 160 раз. Тогда мощность устройства составит 160*3/1600 = 0,3 кВт или 300 Вт.

При втором подходе также используется 15- или 20-минутный интервал времени, но расход электроэнергии определяется уже по цифровой шкале. Например, при разности показаний за 20 минут 0,2 кВт×час мощность агрегата составляет 0,2 × 3 = 0,6 кВт или 600 Вт.

Читайте также:  Встраиваемые светодиодные светильники характеристики мощность

Ваттметром

Современный бытовой измеритель мощности или ваттметр удобен для использования, так как:

  • включается непосредственно в разрыв цепи, для чего снабжен вилкой и розеткой, см. рисунок 2;
  • оборудован легко читаемым цифровым индикатором и снабжен внутренними цепями автоматической настройки, что исключает ошибки в показаниях;
  • отличается хорошими массогабаритными показателями.

Прибор готов к работе немедленно после включения.

Цифровой бытовой ваттметр

Рис. 2. Цифровой бытовой ваттметр

Единственный его недостаток – узкая специализация, поэтому этот прибор редко встречается в домашнем хозяйстве.

Прямое измерение тока

Методы той группы отличаются более высокой точностью за счет того, что основаны на прямом измерении тока. Существуют два прибора для выполнения этой процедуры в бытовых условиях.

Замер токовыми клещами

Наиболее удобны для использования токовые клещи, которые не требуют разрыва контролируемой цепи. Выполнены как ручное устройство с измерительным узлом на основе тороидального сердечника. Для замера тока узел раскрывают на манер губок клещей, после чего закрывают с охватом провода, рисунок 3. Действующее значение тока находится по изменению магнитного поля, которое фиксируется датчиком Холла.

Измерение токовыми клещами

Рис. 3. Измерение токовыми клещами

Замер тестером

Второй способ основан на применении тестера, который переключают в режим амперметра и включают в разрыв цепи. Сложности реализации этой процедуры простыми средствами делают его мало популярным на практике. Нельзя сбрасывать со счетов также то, что некоторые модели тестеров не имеют токовой защиты и выходят из строя (сгорают) при неправильном выборе диапазона (токовой перегрузке).

Заключение

Как видим, мощность электроприборов может быть определена различными способами. Выбор конкретного из них зависит от уровня технической подготовки пользователя и наличия у него необходимых приборов, а доступность нескольких из них вполне может привлекаться как средство контроля правильности выполнения расчетов и измерений.

Простота реализации любого из рассмотренных способов позволяет гарантировать отсутствие перегрузки силовых розеток и достаточно быстро и довольно точно определять фактический потребляемый ток в том случае, если у электрического устройства отсутствуют паспортные данные.

Источник

Как определить какая мощность требуется



Как определить потребляемую мощность электроприбора?

Электричество в массовом масштабе используется во всех сферах современной жизни. Необходимая эксплуатационная гибкость электросети обеспечивается использованием розеток к которым подключаются те или иные приборы. Мощность подключаемого устройства не должна превышать определенного максимального значения.

Что такое потребляемая мощность?

Потребляемая мощность — это численная мера количества электрической энергии, необходимой для функционирования электроприбора или преобразуемой им в процессе функционирования. Для статических устройств (плита, утюг, телевизор, осветительные приборы) энергия тока при работе переходит в тепло). При преобразовании (электродвигатели) – энергия электрического тока преобразуется в механическую энергию.

Основная единица электрической мощности – Ватт, ее численное значение

где U – напряжение, Вольты, I – ток, амперы.

Иногда этот параметр указывают в В×А (V×А у импортной техники), что более правильно для переменного тока. Разница между Ваттами и В×А для бытовых сетей мала и ее можно не учитывать.

Потребляемая электрическая мощность важна при планировании проводки (от нее зависит сечение проводов, а также выбор номиналов и количество защитных автоматов). При эксплуатации она определяет затраты на содержание жилища.

Проблема правильной эксплуатации бытовой электрической сети

С конструктивной точки зрения бытовая электрическая сеть отработана до высокой степени совершенства: ее нормальная эксплуатация не требует специальных знаний.

Сеть рассчитана на определенные условия эксплуатации, нарушение которых приводит к полному или частичному отказу, а в тяжелых случаях – к возникновению пожара.

Условие правильной эксплуатации – отсутствие перегрузки.

При этом нагрузочная способность розеток и потребление подключаемой к ним техники измеряется различными единицами:

  • для розеток это максимально допустимый переменный ток (6 А у традиционных советских розеток старого жилого фонда, 10 или даже 16 А у розеток европейского стиля);
  • подключаемое оборудование характеризуются мощностью, которая измеряется в Ваттах (для мощных устройств вместо Ватт указываются более крупные единицы: киловатты (1 кВт = 1000 Вт), что позволяет не путаться в многочисленных нулях).

Отсюда возникает необходимость:

  • определения связи мощности и тока;
  • нахождения мощности отдельного электрического прибора.

Связь между Ваттами и Амперами проста и следует прямо из приведенного выше определения Ватта. Задача упрощается тем, что напряжение исправной бытовой сети всегда одинаково (220 или 230 В). Отсюда по току всегда находится мощность.

Как определить?

Для решения задачи нахождения мощности можно воспользоваться различными способами. Все они доступны для применения даже при знаниях в области физики и электротехники на уровне школьной программы.

Чаще мощность находят через определение тока, иногда можно обойтись без промежуточных процедур и определит ее сразу.

Смотрим в техпаспорт

Обычно потребляемая мощность указывается в паспорте или описании устройства и дублируется на фирменной табличке-шильдике. Последняя находится на задней стенке корпуса или его основании.

В случае отсутствия описания этот параметр можно узнать по интернету, для чего достаточно воспользоваться поиском по названию устройства.

Указываемая производителем техники мощность относится к пиковой и потребляется от сети только при полной нагрузки, что встречается достаточно редко. Образовавшаяся разница рассматривается как запас. На нормативном уровне этот запас определяют через коэффициент мощности.

Закон Ома в помощь

Мощность большинства бытовых электрических устройств можно довольно точно оценить экспериментально-расчетным путем с привлечением известного еще со средней школы закона Ома. Этот эмпирический закон связывает между собой напряжение, ток и сопротивление R нагрузки как:

P = U 2 /R.
U = 230 В, а сопротивление измеряется тестером. Далее следует простой расчет по формуле
P = 48 400/R Вт.

Например, при R = 200 Ом получаем мощность Р = 240 Вт.

Метод не учитывает так называемое реактивное сопротивление прибора, которое создается в первую очередь входными трансформаторами и дросселями, и поэтому получаемая оценка дает некоторое завышение.

Используем электросчетчик

При определении мощности по счетчику можно поступить двумя различными способами. В обоих случаях от бытовой сети должен питаться только тестируемый прибор. Все без исключения остальные потребители должны быть отключены.

Читайте также:  Как определить среднюю мощность сигнала

При первом подходе для замера мощности привлекается оптический индикатор счетчика, интенсивность вспышек которого пропорциональна потребляемой мощности. Коэффициент пропорциональности указан на лицевой панели в единицах imp/kWh или имп/кВтч, рисунок 1, где imp – количество импульсов (вспышек индикатора) на один киловатт час.

После включения исследуемого устройства необходимо начать считать вспышки индикатора на протяжении 15 или 20 минут. Затем полученное значение умножается на 3 или на 4 (при 20- или 15-минутном интервале замера, соответственно) и делится на коэффициент с лицевой панели. Результат выкладки дает мощность прибора в кВт, который в ряде случаев умножением на 1000 удобно перевести в Ватты.

Пример. Для счетчика имеем k = 1600 импульсов на киловатт час. При 20 минутном интервале замера индикатор сработал (вспыхнул) 160 раз. Тогда мощность устройства составит 160*3/1600 = 0,3 кВт или 300 Вт.

При втором подходе также используется 15- или 20-минутный интервал времени, но расход электроэнергии определяется уже по цифровой шкале. Например, при разности показаний за 20 минут 0,2 кВт×час мощность агрегата составляет 0,2 × 3 = 0,6 кВт или 600 Вт.

Ваттметром

Современный бытовой измеритель мощности или ваттметр удобен для использования, так как:

  • включается непосредственно в разрыв цепи, для чего снабжен вилкой и розеткой, см. рисунок 2;
  • оборудован легко читаемым цифровым индикатором и снабжен внутренними цепями автоматической настройки, что исключает ошибки в показаниях;
  • отличается хорошими массогабаритными показателями.

Прибор готов к работе немедленно после включения.

Единственный его недостаток – узкая специализация, поэтому этот прибор редко встречается в домашнем хозяйстве.

Прямое измерение тока

Методы той группы отличаются более высокой точностью за счет того, что основаны на прямом измерении тока. Существуют два прибора для выполнения этой процедуры в бытовых условиях.

Замер токовыми клещами

Наиболее удобны для использования токовые клещи, которые не требуют разрыва контролируемой цепи. Выполнены как ручное устройство с измерительным узлом на основе тороидального сердечника. Для замера тока узел раскрывают на манер губок клещей, после чего закрывают с охватом провода, рисунок 3. Действующее значение тока находится по изменению магнитного поля, которое фиксируется датчиком Холла.

Замер тестером

Второй способ основан на применении тестера, который переключают в режим амперметра и включают в разрыв цепи. Сложности реализации этой процедуры простыми средствами делают его мало популярным на практике. Нельзя сбрасывать со счетов также то, что некоторые модели тестеров не имеют токовой защиты и выходят из строя (сгорают) при неправильном выборе диапазона (токовой перегрузке).

Заключение

Как видим, мощность электроприборов может быть определена различными способами. Выбор конкретного из них зависит от уровня технической подготовки пользователя и наличия у него необходимых приборов, а доступность нескольких из них вполне может привлекаться как средство контроля правильности выполнения расчетов и измерений.

Простота реализации любого из рассмотренных способов позволяет гарантировать отсутствие перегрузки силовых розеток и достаточно быстро и довольно точно определять фактический потребляемый ток в том случае, если у электрического устройства отсутствуют паспортные данные.

Источник

Онлайн-калькуляторы для определения мощности ПК — теория и практика

Узнать мощность своего компьютера можно по-разному: вооружиться мультиметром и тестировать вручную или зайти на онлайн-калькулятор и посчитать все за 5 минут. Последние выдают результаты автоматически — вбиваешь свои данные и готово. А мы в этом материале проверяем онлайн-калькуляторы на честность. Какие из них выдают более точные данные, какими проще и удобнее пользоваться? И стоит ли вообще доверять готовым алгоритмам или лучше все перепроверить самому?

Тестируем реальную мощность ПК

Перед проверкой калькуляторов сначала нужно определить реальную мощность ПК. Тестируем пару персональных компьютеров двумя способами:

  • Амперметром ACM91 измеряется ток по выходным линиям блока питания. Далее рассчитывается, затем суммируется мощность.
  • По входу блока питания (220 В) измеряется мощность. В этом случае делается поправка на КПД блока питания и используется как справочное значение.
Читайте также:  Какая мощность нужна для 3 метра светодиодной ленты

ПК нагружались тестом стабильности от AIDA, видеокарта — дополнительно стресс-тестом от FurMark. Все компоненты ПК работали в штатном режиме, без разгонов. Для видеокарты была установлена максимальная производительность из предложенных производителем Profiles.

Конфигурации ПК1 и ПК2

SSD A-Data SX6000 Pro, 256 ГБ, М.2 2280

Измеренная потребляемая мощность ПК

U12CPU —линия питания процессора;

(I5-8400, TDP 65 Вт)

(I5-4460, TDP 84 Вт)

Тесты онлайн-калькуляторов мощности

Калькулятор от Bequiet

Онлайн калькулятор от известного производителя солидных блоков питания Bequiet.

Разработчики калькулятора не стали мудрить и предусмотрели в калькуляторе расчет только по четырем основным компонентам: процессор, видеокарта, система и охлаждение.

Мощность потребления процессора определяется по его TDP.

Мощность видеокарты в соответствии с характеристиками от производителя. Список моделей внушительный, но нужной GTX 1650 Super в списке нет. Выбрал GTX 1660, которая потребляет на 20 Вт больше.

В разделе «Система» можно указать количество модулей памяти, устройств SATA и даже устройств PATA. Каждый модуль памяти добавляет 4 Вт к рассчитываемой мощности, каждое устройство SATA или PATA — по 15 Вт. В качестве устройства SATA я укажу свой SSD М.2, так как в калькуляторе отсутствует отдельное поле для указания таких устройств.

В разделе «Охлаждение» можно указать дополнительные вентиляторы в системе и (или) систему водяного охлаждения. Каждый вентилятор добавляет 5 Вт.

В калькуляторе предусмотрены еще две установки — «Использование USB 3.1 Gen 2 для передачи энергии» и «Планируете ли вы разгонять компьютер или использовать разогнанные компоненты».

Спецификация USB 3.1 Gen 2 в теории подразумевает возможность передачи до 100 Вт мощности. И действительно, если установить здесь галочку, то рассчитанная потребляемая мощность компьютера увеличится на 100 Вт.

Если установить галочку в разделе «Планируете ли вы разгонять компьютер», то калькулятор добавит 15 % к данным.

Рассчитанная мощность калькулятором Bequiet

Измеренная потребляемая мощность ПК

* за вычетом 20 Вт на реально установленную GTX 1650 Super

Калькулятор от Сoolermaster

Потребляемая мощность процессора определяется калькулятором по его TDP.

Материнская плата указывается через форм-фактор. По этому параметру добавляется определенная мощность (ATX — 70 Вт, Micro-ATX — 60 Вт).

Видеокарт в списке мало. Я не обнаружил ни GTX1650 Super, ни GTX1660. Выбрал близкую по мощности GTX1650 (85 Вт).

Память выбирается по типу и объему. Например, одна плашка DDR4 объемом 8 ГБ добавляет 3 Вт.

Есть возможность добавить SSD по его объему. Выбор SSD на 250 ГБ добавляет 40 Вт, что явно многовато.

HDD указывается по скорости вращения шпинделя и форм-фактору. При этом HDD с 7200RPM и 3.5″ добавляет 15 Вт, что в среднем не далеко от реальности.

Рассчитанная мощность калькулятором Сoolermaster

Измеренная потребляемая мощность ПК

* с добавлением 15 Вт на реально установленную GTX 1650 Super

Калькулятор от Outervision

В калькуляторе есть возможность выбора платформы, разработчики этот раздел почему-то назвали Motherboard. По умолчанию выбран Desktop, который сразу в расчет добавляет 110 Вт мощности. Эта мощность и будет являться резервом для всех неучтенных потребителей или режимов работы.

Мощность процессора, как и везде, определяется по его TDP.

Одна из особенностей калькулятора — учет параметров разгона процессора (частота и напряжение питания ядер) и видеокарты.

Память выбирается по типу и объему. Кстати, для памяти частоту разгона указать не получится, что выглядит немного не логично.

Предусмотрен выбор всевозможных устройств хранения, даже дисков с интерфейсом IDE. Есть и SSD M.2, который добавил аж 1 Вт мощности. Обширный список устройств с интерфейсом PCI и PCIe и большой выбор прочих устройств, от USB до светодиодной ленты.

Читайте также:  Номинальная мощность по госту

В итоге получаем расчетную максимальную потребляемую мощность системы, рекомендуемую минимальную мощность блока питания (Recommended PSU Wattage) и рекомендуемую мощность источника бесперебойного питания — ИБП (Recommended UPS rating).

Рассчитанная мощность калькулятором Outervision

Измеренная потребляемая мощность ПК

*за вычетом 20 Вт на реально установленную GTX 1650 Super

в скобках указана рекомендуемая минимальная мощность БП

Считать или не считать — выводы и результаты

Подведем итог. Сведем все результаты в одну таблицу.

Измеренная мощность ПК

Наиболее близкую к реальности мощность показывает калькулятор от Bequiet. Его разработчики рекомендуют использовать БП в режиме нагрузки от 50 до 80 %. Я бы остановился на рекомендации в 50 % — будет некий запас на комплектующие и те режимы работы, которые не учитывает калькулятор, плюс получим выигрыш в тишине. Тогда для рассматриваемой конфигурации ПК1 будет оптимальным использование БП мощностью 400 Вт. Может показаться, что этого маловато, но надо понимать, что калькулятор предполагает использование блоков питания от Bequiet.

Калькулятор Bequiet прост в использовании, но не учитывает множество устройств, которые могут быть установлены, а их потребление в сумме может быть очень даже весомым.

В калькуляторе от CoolerMaster добавлена возможность указывать типоразмер материнской платы. Это добавляет определенный резерв мощности, который может пригодиться для не учтенных комплектующих. Во всем остальном он схож с Bequiet и к нему можно применять те же рекомендации по выбору БП.

Калькулятор от CoolerMaster резервирует фиксированную мощность для неучтенных комплектующих и режимов работы.

Если в ПК присутствует много дополнительных устройств, то лучше все-таки использовать калькулятор от Outervision.

А вот калькулятор Outervision выдает сразу рекомендуемую мощность БП. Для рассматриваемой конфигурации ПК1 калькулятор рекомендует БП мощностью 358 Вт. Округляем в большую сторону до ближайшей сотни — получаем 400 Вт.

При расчете можно учесть время использования компьютера за сутки. При этом калькулятор добавляет 5 % к рекомендуемой минимальной мощности блока питания, если ПК будет использоваться в режиме 24/7 против одного часа. Таким образом определяется некий запас надежности БП при круглосуточной работе ПК.

Калькулятор показывает предполагаемый ток по основным линиям БП, предлагает рассчитать экономию электроэнергии и финансовую выгоду при использовании БП с более продвинутыми сертификатами эффективности. Правда, применительно это только к БП от EVGA.

Калькулятор Outervision рассчитывает мощность источника бесперебойного питания (ИБП). Не забудьте указать диагональ используемого монитора.

Все калькуляторы грешат отсутствием некоторых моделей комплектующих. Наверное обычный пользователь не станет искать схожие по характеристикам модели, анализировать и сравнивать. Если возникнет такая проблема, то скорее всего он просто откажется от калькулятора и пойдет по форумам с вопросом какой БП выбрать.

Для таких юзеров есть и другие способы определения мощности БП. Например, можно ориентироваться на рекомендации производителей видеокарт. В частности, для GTX-1650 Super рекомендуется мощность БП 450 Вт, что в общем, соответствует значениям, которые получены при помощи калькуляторов с учетом рекомендаций.

Если же в ПК не используется отдельная видеокарта, то можно смело использовать современный блок питания с минимальной мощностью 300–400 Вт. Этого будет более чем достаточно для стандартной конфигурации настольного ПК.

Принимая во внимание поправки к программам, всеми перечисленными калькуляторами можно уверенно пользоваться. Результаты получаются вполне достоверными, а рекомендации по блокам питания — жизнеспособными. Для продвинутых пользователей больше подходит Outervision благодаря куче дополнительных опций и расширенным советам. Для владельцев ПК с минимальной конфигурацией можно использовать калькуляторы от Bequiet или Сoolermaster, хотя бы просто чтобы не запутаться. В любом случае онлайн-калькуляторы являются отличным инструментом для оценки потребляемой мощности вашего ПК и помогут в выборе блока питания или ИБП.

Как выбрать блок питания для компьютера можно почитать по ссылке.

Источник