Меню

Как определить электромагнитную мощность двигателя постоянного тока



Электромагнитные устройства и электрические машины. Электрические трансформаторы. Информационные электрические машины. Информационные микромашины и синхронные микродвигатели , страница 25

§3 Процессы преобразования энергии в машинах постоянного тока

П1 Энергетическая диаграмма генератора постоянного тока

Нарисуем схему замещения генератора постоянного тока в виде идеального источника постоянного напряжения и резистора внутреннего сопротивления (рисунок 27 а).

Рисунок 27 Эквивалентная схема и энергетическая диаграмма генератора постоянного тока

На рисунке стрелками показаны условно положительные направление тока напряжения и ЭДС. При работе машины постоянного тока в генераторном режиме истинные и условно положительные направления этих величин совпадают. Поэтому в формуле мощности ток и напряжение генератора положительны и мощность генератора тоже следует считать положительной. В соответствии с законом Ома для участка цепи с ЭДС имеем:

Умножим левую и правую части равенства на ток

Мощность , стоящая в левой части равенства (1), называется электромагнитной мощностью, передаваемой через зазор в якорь генератора постоянного тока . Она больше электрической мощности , отдаваемой в сеть на величину электрических потерь от протекания тока по внутреннему сопротивлению генератора. В свою очередь, электромагнитная мощность генератора меньше подводимой к нему механической мощности на величину механических потерь в генераторе. Это иллюстрирует энергетическая диаграмма генератора постоянного тока, изображенная на рисунке 27 б. (1)

П2 Энергетическая диаграмма двигателя постоянного тока

Рисунок 27 а является эквивалентной схемой машины постоянного тока, поэтому пригоден не только для генераторного, но и для двигательного режима работы. Однако, в двигательном режиме истинное направление тока противоположно ЭДС, и , значит, противоположно своему условно положительному направлению . Ток и напряжение в формуле мощности имеют разные знаки , и мощность двигателя следует считать отрицательной. В двигателе напряжение сети больше ЭДС, индуцируемой в обмотке якоря двигателя, на величину падения напряжения в собственном сопротивлении.

Электрическая мощность, получаемая из сети по модулю больше электромагнитной мощности , на величину омических потерь в обмотках двигателя . Механическая мощность, развиваемая двигателем по модулю меньше электромагнитной мощности на величину механических потерь

Это иллюстрирует энергетическая диаграмма, изображенная на рисунке 28.

Рис. 28 Энергетическая диаграмма двигателя постоянного тока

П3 Электромагнитная мощность машины постоянного тока

Таким образом, электромагнитная мощность машины постоянного тока, независимо от режима работы машины определяется, как произведение ЭДС, индуцируемой в якоре на ток якоря.

Читайте также:  Электрические схемы регуляторов мощности напряжения тока

В генераторном режиме знаки тока и ЭДС одинаковы и электромагнитная мощность положительна , в двигательном режиме знаки тока и ЭДС различны и электромагнитная мощность отрицательна. (3)

Выразив ЭДС якоря через полезный магнитный поток и угловую частоту вращения ротора , имеем: (4)

П4 Электромагнитный момент машины постоянного тока. Обратимость электрической машины.

В соответствии с соотношением между вращающим моментом, угловой частотой вращения и мощностью , определим электромагнитный момент машины постоянного тока , как величину пропорциональную электромагнитной мощности и обратно пропорциональной частоте вращения ротора

При переходе машины постоянного тока из генераторного в двигательный режим не меняется направление вращения, а меняется только направление тока в якоре. По этому, в соответствии со знаком электромагнитной мощности, электромагнитный момент генератора будем считать положительным, а электромагнитный момент двигателя отрицательным.

Вопросы для самоконтроля.

  1. Нарисуйте энергетическую диаграмму генератора постоянного тока. (1)
  2. Нарисуйте энергетическую диаграмму двигателя постоянного тока. (2)
  3. Как определяют знак электромагнитной мощности для генератора и двигателя постоянного тока? (3)
  4. Запишите формулу электромагнитной мощности машины постоянного тока. (4)
  5. Запишите формулу электромагнитного момента машины постоянного тока.

Источник

Тема:Электрические машины постоянного тока

date image2015-06-10
views image1922

facebook icon vkontakte icon twitter icon odnoklasniki icon

Изучая работу машин постоянного тока в режиме двигателя надо обратить особое внимание на пуск, регулирования частоты вращения и вращающий момент двигателя, а в режиме генератора – на самовозбуждение.

Характеристики генераторов и двигателей дают наглядное представление об эксплуатационных свойствах электрических машин.

Основные формулы по разделу «Машины постоянного тока» (МПТ).

1. Уравнения напряжения

для генератора: / 1. 377/

для двигателя: / 1. 387/

где Е – электродвижущая сила обмотки якоря, В;

∑ RЯ – сумма сопротивлений всех участков якоря, ОМ;

2. Электродвижущая сила обмотки якоря:

где Р – число пар полюсов,

N – число пазовых проводников,

а – число пар параллельных ветвей обмотки якоря,

ф – магнитный поток, Вб,

n – частота вращения якоря, об/мин,

Се – постоянная величина эдс:

3. Электромагнитный момент

где СМ — постоянная величина момента:

ф – магнитный поток, Вб,

4. Электромагнитная мощность:

5. Электромагнитный момент через электромагнитную мощность:

где ω – угловая частота вращения, рад/с,

Читайте также:  Повышение мощности с выходной трансформатор для

РЭМ – электромагнитная мощность, Вт,

n – частота вращения якоря, об/мин.

Пример 1: Генератор постоянного тока с параллельным возбуждением развивает на выводах номинальное напряжение UНОМ = 220 В и нагружен на сопротивление RH – 2,2 Ом. Сопротивления обмотки якоря RЯ = 0,1 Ом, обмотки возбуждения RВ = 110 Ом. КПД генератора ηг = 0,88.

Определить: 1) токи в нагрузке IH, обмотках якоря IЯ возбуждения IВ; 2) ЭДС генератора Е; 3) полезную мощность Р2 и потребляемую Р1: суммарные потери в генераторе ∑Р, 5) электромагнитную мощность РЭМ, 6) электрические потери в обмотках якоря РЯ и возбуждения Ра.

Решение: 1) токи в нагрузке, обмотках возбуждения и якоря:

2) ЭДС генератора:

3) Полезная и потребляемая мощности:

4) Суммарные потери в генераторе:

5) Электромагнитная мощность:

6) Электрические потери в обмотках якоря и возбуждения:

Пример 2: электродвигатель постоянного тока с последовательным возбуждением работает от сети с Uном = 440 В. Частота вращения n = 1000 об/мин. Полезный момент М = 200 нм. Сопротивления обмотки якоря RЯ = 0,5 Ом, обмотки возбуждения RВ = 0,4 Ом. КПД двигателя ηдв = 0,86.

Определить: 1) полезную мощность двигателя, 2) мощность потребляемую из сети, 3) ток двигателя, 4) сопротивление пускового реостата, при котором пусковой ток превышает номинальный в 2 раза.

Решение: 1. Полезная мощность двигателя:

2. Потребляемая мощность:

3. Потребляемый ток (он же ток возбуждения):

Источник

Электродвигатель постоянного тока

Основные параметры электродвигателя постоянного тока

  • Постоянная момента
  • Постоянная ЭДС
  • Постоянная электродвигателя
  • Жесткость механической характеристики

Постоянная момента

  • где M — момент электродвигателя, Нм,
  • – постоянная момента, Н∙м/А,
  • I — сила тока, А

Постоянная ЭДС

Направление ЭДС определяется по правилу правой руки. Направление наводимой ЭДС противоположно направлению протекающего в проводнике тока.

Наведенная ЭДС последовательно изменяется по направлению из-за перемещения проводников в магнитном поле. Суммарная ЭДС, равная сумме ЭДС в каждой катушке, прикладывается к внешним выводам двигателя. Это и есть противо-ЭДС. Направление противо-ЭДС противоположно приложенному к двигателю напряжению. Значение противо-ЭДС пропорционально частоте вращения и определяется из следующего выражения: [1]

  • где E— электродвижущая сила, В,
  • Ke– постоянная ЭДС, В∙с/рад,
  • w— угловая частота, рад/с
Читайте также:  Номиналы мощности трансформаторов напряжения

Постоянные момента и ЭДС в точности равны между собой KT = KE. Постоянные KT и KE равны друг другу, если они определены в единой системе едениц.

Постоянная электродвигателя

Одним из основных параметров электродвигателя постоянного тока является постоянная электродвигателя Kм. Постоянная электродвигателя определяет способность электродвигателя преобразовывать электрическую энергию в механическую.

  • где — постоянная электродвигателя, Нм/√ Вт ,
  • R — сопротивление обмоток, Ом,
  • – максимальный момент, Нм,
  • — мощность потребляемая при максимальном моменте, Вт

Постоянная электродвигателя не зависит от соединения обмоток, при условии, что используется один и тот же материал проводника. Например, обмотка двигателя с 6 ветками и 2 параллельными проводами вместо 12 одиночных проводов удвоят постоянную ЭДС, при этом постоянная электродвигателя останется не изменой.

Жесткость механической характеристики двигателя

  • где — жесткость механической характеристики электродвигателя постоянного тока

Напряжение электродвигателя

Уравнение баланса напряжений на зажимах двигателя постоянного тока имеет вид (в случае коллекторного двигателя не учитывается падение напряжения в щеточно-коллекторном узле):

  • где U — напряжение, В.

Уравнение напряжения выраженное через момент двигателя будет выглядеть следующим образом:

Соотношение между моментом и частотой вращения при двух различных напряжениях питания двигателя постоянного тока неизменно. При увеличении частоты вращения момент линейно уменьшается. Наклон этой функции KTKE/R постоянный и не зависит от значения напряжения питания и частоты вращения двигателя.

Благодаря таким характеристикам упрощается управление частотой вращения и углом поворота двигателей постоянного тока. Это характерно для коллекторных и вентильных двигателей постоянного тока, что нельзя сказать о двигателях переменного тока и шаговых двигателях [1].

Мощность электродвигателя постоянного тока

Упрощенная модель электродвигателя выглядит следующим образом:

Общая мощность электродвигателя

  • где I – сила тока, А
  • U — напряжение, В,
  • M — момент электродвигателя, Н∙м
  • R — сопротивление токопроводящих элементов, Ом,
  • L — индуктивность, Гн,
  • Pэл — электрическая мощность (подведенная), Вт
  • Pмех — механическая мощность (полезная), Вт
  • Pтеп — тепловые потери, Вт
  • Pинд — мощность затрачиваемая на заряд катушки индуктивности, Вт
  • Pтр — потери на трение, Вт

Механическая постоянная времени

Механическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое частота вращения ненагруженного электродвигателя достигает уровня в 63,21% (1-1/e) от своего конечного значения.

  • где — механическая постоянная времени, с

Источник

Как определить электромагнитную мощность двигателя постоянного тока



Тема:Электрические машины постоянного тока

date image2015-06-10
views image1921

facebook icon vkontakte icon twitter icon odnoklasniki icon

Изучая работу машин постоянного тока в режиме двигателя надо обратить особое внимание на пуск, регулирования частоты вращения и вращающий момент двигателя, а в режиме генератора – на самовозбуждение.

Характеристики генераторов и двигателей дают наглядное представление об эксплуатационных свойствах электрических машин.

Основные формулы по разделу «Машины постоянного тока» (МПТ).

1. Уравнения напряжения

для генератора: / 1. 377/

для двигателя: / 1. 387/

где Е – электродвижущая сила обмотки якоря, В;

∑ RЯ – сумма сопротивлений всех участков якоря, ОМ;

2. Электродвижущая сила обмотки якоря:

где Р – число пар полюсов,

N – число пазовых проводников,

а – число пар параллельных ветвей обмотки якоря,

ф – магнитный поток, Вб,

n – частота вращения якоря, об/мин,

Се – постоянная величина эдс:

3. Электромагнитный момент

где СМ — постоянная величина момента:

ф – магнитный поток, Вб,

4. Электромагнитная мощность:

5. Электромагнитный момент через электромагнитную мощность:

где ω – угловая частота вращения, рад/с,

РЭМ – электромагнитная мощность, Вт,

n – частота вращения якоря, об/мин.

Пример 1: Генератор постоянного тока с параллельным возбуждением развивает на выводах номинальное напряжение UНОМ = 220 В и нагружен на сопротивление RH – 2,2 Ом. Сопротивления обмотки якоря RЯ = 0,1 Ом, обмотки возбуждения RВ = 110 Ом. КПД генератора ηг = 0,88.

Определить: 1) токи в нагрузке IH, обмотках якоря IЯ возбуждения IВ; 2) ЭДС генератора Е; 3) полезную мощность Р2 и потребляемую Р1: суммарные потери в генераторе ∑Р, 5) электромагнитную мощность РЭМ, 6) электрические потери в обмотках якоря РЯ и возбуждения Ра.

Решение: 1) токи в нагрузке, обмотках возбуждения и якоря:

Читайте также:  Сплит системы мощность только охлаждение

2) ЭДС генератора:

3) Полезная и потребляемая мощности:

4) Суммарные потери в генераторе:

5) Электромагнитная мощность:

6) Электрические потери в обмотках якоря и возбуждения:

Пример 2: электродвигатель постоянного тока с последовательным возбуждением работает от сети с Uном = 440 В. Частота вращения n = 1000 об/мин. Полезный момент М = 200 нм. Сопротивления обмотки якоря RЯ = 0,5 Ом, обмотки возбуждения RВ = 0,4 Ом. КПД двигателя ηдв = 0,86.

Определить: 1) полезную мощность двигателя, 2) мощность потребляемую из сети, 3) ток двигателя, 4) сопротивление пускового реостата, при котором пусковой ток превышает номинальный в 2 раза.

Решение: 1. Полезная мощность двигателя:

2. Потребляемая мощность:

3. Потребляемый ток (он же ток возбуждения):

Источник

Электромагнитные устройства и электрические машины. Электрические трансформаторы. Информационные электрические машины. Информационные микромашины и синхронные микродвигатели, страница 25

§3 Процессы преобразования энергии в машинах постоянного тока

П1 Энергетическая диаграмма генератора постоянного тока

Нарисуем схему замещения генератора постоянного тока в виде идеального источника постоянного напряжения и резистора внутреннего сопротивления (рисунок 27 а).

Рисунок 27 Эквивалентная схема и энергетическая диаграмма генератора постоянного тока

На рисунке стрелками показаны условно положительные направление тока напряжения и ЭДС. При работе машины постоянного тока в генераторном режиме истинные и условно положительные направления этих величин совпадают. Поэтому в формуле мощности ток и напряжение генератора положительны и мощность генератора тоже следует считать положительной. В соответствии с законом Ома для участка цепи с ЭДС имеем:

Умножим левую и правую части равенства на ток

Мощность , стоящая в левой части равенства (1), называется электромагнитной мощностью, передаваемой через зазор в якорь генератора постоянного тока . Она больше электрической мощности , отдаваемой в сеть на величину электрических потерь от протекания тока по внутреннему сопротивлению генератора. В свою очередь, электромагнитная мощность генератора меньше подводимой к нему механической мощности на величину механических потерь в генераторе. Это иллюстрирует энергетическая диаграмма генератора постоянного тока, изображенная на рисунке 27 б. (1)

Читайте также:  Определить среднюю мощность станции

П2 Энергетическая диаграмма двигателя постоянного тока

Рисунок 27 а является эквивалентной схемой машины постоянного тока, поэтому пригоден не только для генераторного, но и для двигательного режима работы. Однако, в двигательном режиме истинное направление тока противоположно ЭДС, и , значит, противоположно своему условно положительному направлению . Ток и напряжение в формуле мощности имеют разные знаки , и мощность двигателя следует считать отрицательной. В двигателе напряжение сети больше ЭДС, индуцируемой в обмотке якоря двигателя, на величину падения напряжения в собственном сопротивлении.

Электрическая мощность, получаемая из сети по модулю больше электромагнитной мощности , на величину омических потерь в обмотках двигателя . Механическая мощность, развиваемая двигателем по модулю меньше электромагнитной мощности на величину механических потерь

Это иллюстрирует энергетическая диаграмма, изображенная на рисунке 28.

Рис. 28 Энергетическая диаграмма двигателя постоянного тока

П3 Электромагнитная мощность машины постоянного тока

Таким образом, электромагнитная мощность машины постоянного тока, независимо от режима работы машины определяется, как произведение ЭДС, индуцируемой в якоре на ток якоря.

В генераторном режиме знаки тока и ЭДС одинаковы и электромагнитная мощность положительна , в двигательном режиме знаки тока и ЭДС различны и электромагнитная мощность отрицательна. (3)

Выразив ЭДС якоря через полезный магнитный поток и угловую частоту вращения ротора , имеем: (4)

П4 Электромагнитный момент машины постоянного тока. Обратимость электрической машины.

В соответствии с соотношением между вращающим моментом, угловой частотой вращения и мощностью , определим электромагнитный момент машины постоянного тока , как величину пропорциональную электромагнитной мощности и обратно пропорциональной частоте вращения ротора

При переходе машины постоянного тока из генераторного в двигательный режим не меняется направление вращения, а меняется только направление тока в якоре. По этому, в соответствии со знаком электромагнитной мощности, электромагнитный момент генератора будем считать положительным, а электромагнитный момент двигателя отрицательным.

Читайте также:  Электрический конвектор мощность 500 вт

Вопросы для самоконтроля.

  1. Нарисуйте энергетическую диаграмму генератора постоянного тока. (1)
  2. Нарисуйте энергетическую диаграмму двигателя постоянного тока. (2)
  3. Как определяют знак электромагнитной мощности для генератора и двигателя постоянного тока? (3)
  4. Запишите формулу электромагнитной мощности машины постоянного тока. (4)
  5. Запишите формулу электромагнитного момента машины постоянного тока.

Источник