Меню

Как найти мощность силы тяготения



Гравитационные силы. Закон всемирного тяготения.

Содержание

  1. Сила тяжести
  2. Вывод формулы ускорения свободного падения
  3. Первая космическая скорость
  4. Вывод формулы первой космической скорости

Все тела взаимодействуют друг с другом. Так, две материальные точки, обладающие массой, притягиваются друг к другу с некоторой силой, которую называют гравитационной, или силой всемирного тяготения.

Сила всемирного тяготения — сила, с которой все тела притягиваются друг к другу.

Закон всемирного тяготения

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними.

F — сила всемирного тяготения, m 1 и m 2 — массы двух притягивающихся друг к другу тел, R — расстояние между этими телами, G — гравитационная постоянная ( G = 6,67∙10 –11 Н ∙ м 2 /кг 2 ).

Сила всемирного тяготения направлена по линии, соединяющей центры двух тел.

Гравитационная постоянная численно равна силе притяжения между двумя точечными телами массой 1 кг каждое, если расстояние между ними равно 1 м. Если R = 1 м, m 1 = 1 кг и m 2 = 1 кг, то F = G.

G = 6,67∙10 –11 Н ∙ м 2 /кг 2 .

Сила тяжести

Согласно закону всемирного тяготения, все тела притягиваются между собой. Так, Земля притягивает к себе падающий на нее мяч, а мяч притягивает к себе Землю.

Сила тяжести — сила, с которой Земля притягивает к себе тела.

Сила тяжести действует на все тела, находящиеся в поле притяжения Земли. Она всегда направлена к центру нашей планеты.

Расчет силы тяжести на Земле

Силу тяжести можно рассчитать с помощью закона всемирного тяготения. Тогда одна из масс будет равна массе земли. Обозначим ее большой буквой M. Вторая масса будет принадлежать телу, притягивающемуся к Земли. Обозначим его m. В качестве R будет служить радиус Земли. В таком случае сила тяжести будет определяться формулой:

Вывод формулы ускорения свободного падения

Согласно второму закону Ньютона, сила, которая действует на тело, сообщает ему ускорение. Поэтому силу тяжести также можно выразить через это ускорение. Обозначим его g — ускорение свободного падения.

Читайте также:  Как рассчитать потребляемую мощность лампочки

Пример №1. Мальчик массой 50 кг прыгнул под углом 45 градусов к горизонту. Найти силу тяжести, действующую на него во время прыжка.

Сила тяжести зависит только от массы тела и ускорения свободного падения. Направлена она всегда к центру Земли, и от характера движения тела не зависит. Поэтому:

Мы получили две формулы для вычисления силы тяжести: одну — исходя из закона всемирного тяготения, вторую — исходя из второго закона Ньютона. Приравняем правые части формул и получим:

Формула расчета ускорения свободного падения

Вместо массы и радиуса Земли можно взять массы и радиусы любых планет. Так можно рассчитать ускорение свободного падения для любого космического тела.

Пример №2. Рассчитать ускорение свободного падения на Луне. Считать, что радиус Луны равен 1736 км, а ее масса — 7,35∙10 22 кг.

Переведем километры в метры: 1736 км = 1736000 м.

Первая космическая скорость

Исаак Ньютон смог доказать, что причиной падения тел на Землю, движения Луны вокруг Земли и движения Земли вокруг Солнца является сила тяготения. Если камень бросить в горизонтальном направлении, его траектория будет отклонена от прямой линии под действием земной силы тяжести. Если же придать этому камню большую скорость, камень приземлится на большем расстоянии. Значит, существует такая скорость, при которой камень не приземлится, а начнет бесконечно вращаться вокруг Земли.

Первая космическая скорость — минимальная (для заданной высоты над поверхностью планеты) горизонтальная скорость, которую необходимо придать объекту, чтобы он совершал движение по круговой орбите вокруг планеты.

Вывод формулы первой космической скорости

Когда тело массой m вращается на некоторой высоте h, расстояние между ним и центром Земли равно сумме этой высоты и радиуса Земли. Поэтому сила тяготения между этим телом и Землей будет равна:

Движение тела вокруг планеты — частный случай движения тела по окружности с постоянной по модулю скоростью. Мы уже знаем, что такое тело движется с центростремительным ускорением, направленным к центру окружности. В данном случае центростремительное ускорение будет направлено к центру Земли. Это ускорение сообщает телу сила тяготения.

Читайте также:  Пневматическая винтовка допустимая мощность

Так как тело движется на некоторой высоте h от поверхности Земли, центростремительное ускорение будет определяться формулой:

Подставив это ускорение в формулу второго закона Ньютона, получим силу, с которой Земля притягивает к себе тело массой m:

Приравняем правые части формул, следующих из закона всемирного тяготения и второго закона Ньютона, и получим:

Отсюда скорость, с которой должно тело массой m бесконечно вращаться вокруг Земли на высоте h, равна:

Скорость бесконечно вращающегося вокруг Земли тела не зависит от его массы. Она зависит только от высоты, на которой оно находится. Чем выше высота, тем меньше скорость его вращения.

Тело, вращающееся вокруг планеты, называется ее спутником. Чтобы любое тело стало спутником Земли, нужно сообщить ему некоторую скорость на поверхности планеты в горизонтальном направлении. Высота h в этом случае равна 0. Тогда эта скорость будет равна:

8 км/с — первая космическая скорость Земли.

Пример №3. Рассчитать первую космическую скорость для Венеры. Считать, что масса Венеры равна 4,87∙10 24 кг, а ее радиус равен 6052 км.

Источник

Понятие о силе тяжести в физике

  • Что такое сила тяжести
  • Формулы для нахождения
    • Единица измерения
    • Расчет через массу m и ускорение свободного падения g
  • Закон всемирного тяготения Ньютона
  • Примеры решения задач

Что такое сила тяжести

Сила тяжести — гравитационная сила, с которой Земля или другой астрономический объект притягивает тело на поверхности, или вблизи себя.

Гравитация — универсальное фундаментальное взаимодействие между всеми материальными телами.

Впервые понятие «силы тяжести» возникло в теориях Аристотеля, который объяснял это явление движением тяжелых физических стихий (земля, вода) к своему естественному местоположению (к центру Вселенной, который, как он полагал, находится внутри Земли). Также Аристотель рассуждал от чего зависит скорость притяжения. По его мнению чем ближе тяжелое тело к центру, тем больше скорость притяжения.

В дальнейшем, Архимед рассуждал о центрах тяжести геометрических фигур. Стевин на опытах установил, что тела разных масс падают с одинаковым ускорением. Галилей работал в том же направлении и экспериментально изучал законы падения тел. Гюйгенс разработал классическую теорию движения маятника. Декарт создал кинетическую теорию тяготения. Ньютон, благодаря своему II закону и равенству ускорений падающих тел сделал вывод о связи массы тела и силы тяжести, а так же доказал, что сила тяжести — одно из проявлений силы всемирного тяготения.

Читайте также:  Встраиваемая вытяжка мощность 700

Ошибочно полагать, что сила гравитационного притяжения и сила тяжести — это одно и то же. Эта сила лишь одна составляющая силы тяжести, вторая — центробежная сила инерции.

Формулы для нахождения

Единица измерения

Эта величина в СИ (системе интернациональной), как и любая другая сила измеряется в Ньютонах: \(\lbrack F_<тяж>\rbrack=Н\)

Расчет через массу m и ускорение свободного падения g

Для решения задач обычно используют \(g\approx10\frac н<кг>\)

Закон всемирного тяготения Ньютона

Два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними.

\(F=G\fracR\) , где F — сила притяжения, G — гравитационная постоянная \((G=6,67\cdot10^<-11>\frac<Н\cdot м^2><кг^2>), m_1,m_2\) — массы тел, R — расстояние между ними.

  • материальных точек;
  • шаров;
  • шара большого радиуса и тела.

Из этого закона выводится вторая формула для силы тяжести:

\(F_<тяж>=G\frac\) , где \(F_<тяж>\) — сила тяжести, G — гравитационная постоянная, \(M_п\) — масса планеты, m — масса тела, \(R_п\) — радиус планеты.

Примеры решения задач

Какова масса человека, если Земля притягивает его с силой 600 Н?

Дано: \(F_<тяж>=600\;Н, g\approx10\frac н<кг>\)

Найдите силу тяжести тела, масса которого 7 кг?

Дано: \(m=7кг, g\approx10\frac н<кг>\)

Решение : \(F_<тяж>=mg, F_<тяж>=7\;кг\cdot10\frac Н<кг>=70\;Н\)

Сравните силы тяжести, действующие на тела с массами 3 кг и 6 кг.

Решение : сила тяжести прямо пропорциональна массе тела, т.е. они отличаются в одинаковое количество раз. Масса второго тела в 2 раза больше массы первого, значит сила тяжести второго тела будет в 2 раза больше силы тяжести первого.

Источник