Меню

Измерение мощности одной фазы



Измерение активной мощности в однофазной цепи

Измерение активной мощности в однофазной цепи производится одноэлементными ваттметрами. Расширение диапазонов измерения в цепях переменного тока осуществляется с помощью измерительных трансформаторов тока и напряжения.

Измерение мощности методом одного прибора. При использовании метода одного прибора измерение мощности осуществляется с помощью одноэлементного ваттметра. Метод применяется при измерении мощности в однофазных цепях и симметричных трехфазных цепях (комплексные сопротивления фаз одинаковы). И в том и в другом случае обмотка напряжения ваттметра включается на фазное напряжение, а обмотка тока включается в рассечку провода какой-либо фазы. На рис. 11.8 показано включение одноэлементного ваттметра в однофазную цепь переменного тока. Пренебрегая методической погрешностью, запишем показания ваттметра:

PPW = UI cos j ,

где U и I – действующие значения напряжения и тока нагрузки; j = (U,I).

Показание ваттметра в этом случае будет соответствовать мощности одной фазы. Для получения мощности всей трехфазной цепи необходимо показание ваттметра утроить, т.е. P = 3PPW.

Включение неподвижной катушки ваттметра последовательно с нагрузкой возможно только при токах нагрузки 10-20 А. При больших токах нагрузки неподвижную катушку ваттметра включают через трансформатор тока (ТА). При измерении в цепях высокого напряжения (свыше 600 В) подвижную катушку ваттметра включают не непосредственно в измерительную цепь, а через трансформатор напряжения (ТV), а неподвижную катушку ваттметра – через ТА (независимо от значения тока нагрузки).

Значение измеряемой мощности определяют по показанию ваттметра, умноженному на произведение коэффициентов трансформации ТV и ТА:

где Рх – измеренное значение активной мощности в цепи нагрузки; РРW – показание ваттметра; KUном, KIном – номинальные коэффициенты трансформации, соответственно, ТV и ТА.

Измеренное значение мощности будет отличаться от действительного значением погрешности в передаче значений напряжения и тока, а также угловых погрешностей трансформаторов. Электродинамические ваттметры изготовляют многопредельными, высоких классов точности (0.1; 0.2) с диапазоном измеряемых мощностей от десятых долей Вт до 3 – 6 кВт. При грубых измерениях в качестве щитовых приборов применяют ферродинамические ваттметры.

Следует отметить, что измерение активной мощности одноэлементными ваттметрами осуществляется только в лабораторной практике. При технических измерениях в промышленных условиях для измерения активной мощности в трехфазных трехпроводных цепях применяют двухэлементные ваттметры, а в четырехпроводных цепях – трехэлементные.

Кроме электродинамических ваттметров для измерения мощности применяются электронные выпрямительные, термоэлектрические, цифровые и др. ваттметры.

Измерение мощности методом двух приборов. Метод двух приборов используется при измерении мощности в трехфазной трехпроводной сети с помощью двух одноэлементных ваттметров. Метод дает правильные результаты независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. Кроме того, метод двух приборов применяется для включения элементов двухэлементного ваттметра при измерении с помощью его мощности в трехфазной трехпроводной сети

На рис. 11.9 изображена схема включения двух одноэлементных ваттметров. Обычно токовая обмотка одного ваттметра, например, PW1, включается в фазу А, а токовая обмотка другого ваттметра – PW2 – в фазу С. Обмотки напряжения ваттметров включаются на линейные напряжения так, как это показано на рис. 11.9. При измерении мощности с использованием метода двух приборов общая мощность цепи равна алгебраической сумме показаний ваттметров

где PW1=UIA cos j1; PW2=UIС cos j2, (j1 фазовый сдвиг между векторами U и IA; j2 – фазовый сдвиг между векторамиU и IС ). Или

где j — фазовый сдвиг между напряжением и током в фазе.

Мощность любой 3-х фазной системы вычисляется по формуле:

Таким образом, сумма показаний ваттметров PW1 и PW2 есть не что иное, как мощность трехфазной цепи.

Измерение мощности методом трех приборов. Метод трех приборов применяется при измерении мощности в трехфазной четырехпроводной цепи (при этом используются три одноэлементных ваттметра, включаемые в каждую фазу). Так же как и метод двух приборов, метод трех приборов дает правильные результаты независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. По схеме, реализующей метод трех приборов, включаются также элементы трехэлементных трехфазных ваттметров. Очевидно, что для нахождения мощности 3-х фазной четырехпроводной цепи необходимо взять алгебраическую сумму всех ваттметров:

Источник

УЭ 6.3-3 ИЗМЕРЕНИЕ АКТИВНОЙ МОЩНОСТИ В ЦЕПЯХ ПЕРЕМЕННОГО ТОКА

Измерение активной мощности в однофазной цепи производится одноэлементными ваттметрами. Измерение активной мощности в трехфазных цепях в лаборатор­ных условиях также может быть проведено при помощи одноэлементных ваттметров, включаемых в трехфазную цепь по схемам с использованием метода одного, двух или трех приборов. Однако при технических измерениях, как правило, в этом случае используются специальные двух- и трехэлементные ваттметры.

Расширение диапазонов измерения во всех случаях применения ваттметров в цепях переменного тока осуществляется спомощью измерительных трансформато­ров тока и напряжения.

Читайте также:  Потребляемая мощность прецизионного кондиционера

Рисунок 6.15. Схема включения ваттметра в однофазную цепь переменного тока и векторная диаграмма.

Измерение мощности методом одного прибора.При использовании метода одного прибора измерение мощности осуществляется с помощью одноэлементного ватт­метра. Метод применяется при измерении мощности в однофазных цепях и симметричных трехфазных цепях (комплексные сопротивления фаз одинаковы). И в том и в другом случае обмотка напряжения ваттметра вклю­чается на фазное напряжение, а обмотка тока включает­ся в рассечку провода какой-либо фазы.

На рисунке 6.15 показано включение одноэлементного ваттметра в однофазную цепь переменного тока. Прене­брегая методической погрешностью, записываем показа­ние ваттметра:

PW = UI cosφ,

где U и I— действующие значения напряжения и тока нагрузки;φ=

Искусственная нулевая точка обычно создается с помощью двух резисторов (со­противление каждого резистора равно сопротивлению це­пи обмотки напряжения ваттметра) и сопротивления цепи обмотки напряжения. Сопротивление цепи обмотки напряжения любого ваттметра либо приведено на ци­ферблате прибора, либо указывается в техниче­ском паспорте на данный прибор.

Включение ваттметра в трехфазную трехпроводную цепь по схеме с искусственной нулевой точкой показано на рисунке 6.17.

Рисунок 6.17. Схема включения ваттметра в трехфазную трехпроводную цепь с недоступной нулевой точкой при полной симметрии

Анализируя схемы включения ваттметров, приведен­ные на рисунке 6.16, а, б, нетрудно видеть, что показание ваттметра будет соответствовать мощности одной фазы.

Мощности одной фазы будет соответствовать и показа­ние ваттметра, включение которого показано на рисунке 6.17. Действительно, фазное напряжение UA, на которое включена обмотка напряжения ваттметра, равно Линейный ток IАв токовой обмотке ваттметра . Следовательно, показание ваттметра

PW = ( )= cosφ,

т. е. ваттметр покажет мощность одной фазы, так как при симметричной нагрузке

Следует обратить внимание на правильность включения генераторных за­жимов ваттметра и соответствующих зажимов измери­тельных трансформаторов. Нетрудно видеть, что в схеме рисунка6.18.б, а значение измеряемой мощности Р определя­ется умножением показания ваттметра PWна номиналь­ный коэффициент трансформации КТА применяемого измерительного трансформатора тока:

Р= Pw КТА.

В схеме рис. 12.6,6 значение измеряемой мощности определяется по формуле

где КТU -номинальный коэффициент трансформации используемого измерительного трансформатора напря­жения.

Измерение мощности методом двух приборов. Метод двух приборов используется при измерении мощности в трехфазной трехпроводной цепи с помощью двух одно­элементных ваттметров. Метод дает правильные резуль­таты независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. Кроме того, метод двух приборов приме­няется для включения элементов двухэлементного ватт­метра при измерении с его помощью мощности в трех­фазной трехпроводной цепи.

Рисунок 6.19. Схема включения двух ваттметров в трехфазную трехпроводную цепь (а) и векторная диаграмма (б)

На рисунке 6.19, а изображена схема включения двух од­ноэлементных ваттметров. Обычно токовая обмотка од­ного ваттметра, например PW1, включается в фазу А, а токовая обмотка другого ваттметра — PW2— в фазу С. Обмотки напряжения ваттметров включаются на линей­ные напряжения.

На рисунке 6.19,6 представлена векторная диаграмма це­пи для частного случая — случая симметрии токов и на­пряжений.

Нетрудно видеть, что показание ваттметра PW1в этом случае равно:

PW1=UabIаcos(30°+φ)=UлIлcos(30° + φ).

Аналогично нетрудно определить и показание ватт­метра PW2:

PW2 = Ucb Ic cos(30° — φ) =UлIлcos (30° — φ).

Учитывая, что при измерении мощности с использо­ванием метода двух приборов общая мощность цепи равна алгебраической сумме показаний ваттметров, а также учитывая выражения (12.4) и (12.5), получаем:

После несложных преобразований имеем:

Р = UлIл 2cos30°cos φ = UлIлcos φ

Таким образом, сумма показаний ваттметров PW1 и PW2, есть не что иное, как мощ­ность трехфазной цепи.

Следует отметить, что показания каждого ваттметра могут быть поло­жительными или отрицательными в зависимости от зна­чения угла φ и его знака. Более того, при φ =+60° пока­зание ваттметра PW1равно нулю, а при φ = -60° нуле­вое показание будет у ваттметра PW2. При φ =0, т. е. при чисто активной нагрузке, показание ваттметраPW1равно показанию ваттметра PW2.

Двухэлементные ваттметры, обычно называемые трех­фазными ваттметрами, представляют собой конструкцию из двух измерительных механизмов одноэлементных фер­родинамических ваттметров с одной общей подвижной частью.

Примерное конструктивное выполнение двухэлемент­ного ферродинамического измерительного механизма, широко используемого для построения трехфазных ватт­метров, показано на рисунке 6.20.

Два шихтованных магни­топровода 1 имеют неподвижные токовые обмотки 2. Об­мотки напряжения, выполненные в виде подвижных ра­мок 3, укреплены на общей оси.

Включение токовых обмоток и обмоток напряжения трехфазных двухэлементных ваттметров производится по схеме рисунка6.19, в которой используется метод двух при­боров.

Читайте также:  Двигатель внешнего сгорания мощностью

Рисунок 6.20, а — двухэлементный ферродинамический измерительный механизм; б- схема включения элементов двухэлементного ваттметра в трехфазную трехпроводную цепь с использованием трансформаторов тока

Расширение диапазонов измерения трехфазных двух­элементных ваттметров, так же как и одноэлементных однофазных ваттметров, осуществляется с помощью из­мерительных трансформаторов тока и напряжения. На рисунке 6.20,б показано включение элементов двухэлементного трехфазного ваттметра в трехфазную трехпроводную цепь через измерительные трансформаторы тока. Оче­видно, что в этом случае для получения мощности цепи показание ваттметра необходимо умножить на номи­нальный коэффициент трансформации КТА применяемых измерительных трансформаторов тока. Если измерение мощности осуществляется двумя одноэлементными ватт­метрами, то на значение КТU умножается арифмети­ческая сумма показаний ваттметров.

Измерение мощности методом трех приборов. Извест­но, что метод трех приборов применяется при измерении мощности в трехфазной четырехпроводной цепи (при этом используются три одноэлементных ваттметра).Так же как и метод двух приборов, метод трех приборов дает правильные результаты независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. По схеме, реализую­щей метод трех приборов, включаются также элементы трехэлементных трехфазных ваттметров.

Рисунок 6.21, а — схема включения трех ваттметров в трехфазную трехпроводную цепь; б- трехэлементный ферродинамический измерительный механизм.

На рисунке 6.21,а приведена схема включения грех одно­элементных ваттметров по методу трех приборов в трехфазную четырехпроводную цепь. Нетрудно видеть, что в этом случае каждый ваттметр измеряет мощность одной фазы:

где UА, UВ иUС— фазные напряжения; IА, IВиIСфазные токи; φА, φВ и φС — фазовые сдвиги между соот­ветствующими фазными напряжениями и фазными то­ками.

Очевидно, что для нахождения мощности трехфазной четырехпроводной цепи необходимо взять алгебраическую сумму показаний всех ваттметров:

Принципиальная конструктивная схема трехэлемент­ного трехфазного ферродинамического ваттметра приве­дена на рисунке 6.21,б. Каждый элемент содержит выпол­ненный из магнитомягкого материала шихтованный магнитопровод / с неподвижной токовой обмоткой 3. Под­вижные рамки элементов 2 жестко укреплены на одной оси. Таким образом, на подвижную часть трехфазного трехэлементного ваттметра действует арифметическая сумма моментов всех трех элементов. Непосредственное включение элементов ваттметра в трехфазную четырех-проводную цепь осуществляется по схеме, изображенной на рисунке 6.21,а.

Расширение диапазонов измерения трехэлементных трехфазных ваттметров осуществляется так же, как и двухэлементных ваттметров,— с помощью измеритель­ных трансформаторов тока и напряжения.

Следует отметить, что в последние годы промышлен­ностью для измерения мощности в четырехпроводной трехфазной цепи выпускаются специальные щитовые ферродинамические двухэлементные ваттметры типа Д323. Элементы этих ваттметров имеют не по одной, а по две токовые обмотки. Дополнительные токовые об­мотки включаются в четырехпроводную трехфазную цепь по специальной схеме. Показания такого ваттметра справедливы как при равномерной, так и при неравно­мерной нагрузке фаз.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

§102. Измерение мощности и электрической энергии

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 336. Схема для измерения мощности

Рис. 336. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения . Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Читайте также:  Формула определения мощности трехфазного напряжения

Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз ? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

Рис. 337. Ферродинамический счетчик электрической энергииРис. 337. Ферродинамический счетчик электрической энергии

Рис. 338. Индукционный счетчик электрической энергииРис. 338. Индукционный счетчик электрической энергии

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,— буквами Г.

Источник