Меню

Измерения коэффициента мощности приборами прямого действия



Как измерить коэффициент мощности

Как измерить коэффициент мощностиДля измерения косинус фи лучше всего иметь специальные приборы, предназначенные для непосредственного его измерения — фазометры.

Фазометр — электроизмерительный прибор, предназначенный для измерения углов сдвига фаз между двумя изменяющимися периодически электрическими колебаниями.

Если таких приборов нет, то измерять коэффициент мощности можно косвенным методом . Например, в однофазной сети косинус фи можно определить по показаниям амперметра, вольтметра и ваттметра:

cos фи = P / (U х I), где Р, U, I — показания приборов.

в цепи трехфазного тока cos фи = P w / ( √ 3 х Uл х Iл)

где Pw — мощность всей системы, Uл, Iл — линейные напряжение и ток, измеренные вольтметром и амперметром.

В симметричной трехфазной цепи значение косинус фи можно определить из показаний двух ваттметров P w 1 и P w 2 по формуле

Общая относительная погрешность рассмотренных методов равна сумме относительных погрешностей каждого прибора, поэтому точность косвенных методов невелика.

Численное значение косинус фи зависит от характера нагрузки. Если нагрузкой являются лампы накаливания и нагревательные приборы, то косинус фи = 1, если нагрузка содержит еще и асинхронные электродвигатели, то косинус фи

Поэтому на практике в электрических сетях определяют так называемый средневзвешенный коэффициент мощности за какое-то определенное время, допустим, за сутки или месяц. Для этого в конце рассматриваемого периода снимают показания счетчиков активной и реактивной энергии Wa и Wv и определяют средневзвешенное значение коэффициента мощности по формуле

Это значение средневзвешенного коэффициента мощности желательно иметь в электрических сетях равным 0,92 — 0,95.

Как измерить коэффициент мощности

Использование фазометра для измерения коэффициента мощности

Измерить непосредственно фазовый сдвиг между напряжением и током нагрузки можно при помощи специальных измерительных приборов — фазометров .

Наибольшее распространение получили фазометры электродинамической системы , в которых неподвижная катушка включена последовательно с нагрузкой, а подвижные катушки — параллельно нагрузке, так, что ток одной из них отстает от напряжения на угол β1. Для этого последовательно с катушкой включена активно-индуктивная нагрузка, а ток другой опережает напряжение на некоторый угол β2 , для чего включена активно-емкостная нагрузка, причем β1 + β2 = 90 о

Схема включения фазометра (а) и векторная диаграмма напряжений и токов

Рис. 1. Схема включения фазометра (а) и векторная диаграмма напряжений и токов (б).

Угол отклонения стрелки такого прибора зависит только от значения косинуса фи.

фазометрДля измерения фазового сдвига между двумя напряжениями часто применяют цифровые фазометры . В цифровых фазометрах прямого преобразования для измерения фазового сдвига его преобразуют в интервал времени и измеряют последний. Исследуемые напряжения подают на два входа прибора, на цифровом отсчетном устройстве прибора снимают показания числа импульсов, поступающих на счетчик прибора за один период исследуемых напряжений, которое соответствует фазовому сдвигу в градусах (или в долях градуса).

Из щитовых приборов, предназначенных для измерения, наиболее простой фазометр типа Д31, который может работать в однофазных сетях переменного тока с частотой 50, 500, 1000, 2400, 8000 Гц. Класс точности 2,5. Пределы измерений косинуса фи от 0,5 емкостного фазового сдвига до 1 и от 1 до 0,5 индуктивного фазового сдвига. Фазометры включают через измерительные трансформаторы тока с вторичным током 5 А и измерительные трансформаторы напряжения с вторичным напряжением 100 В.

Для измерения косинуса фи в трехфазной сети при симметричной нагрузке можно применять щитовые фазометры типа Д301. Класс их точности 1,5. Последовательные цепи включают на ток 5 А непосредственно, а также через трансформатор тока, параллельные цепи включают непосредственно на 127, 220, 380 В, а также через измерительные трансформаторы напряжения.

Источник

Измерение коэффициента мощности

Для измерения cos φ обычно применяют приборы для непосредственного его измерения — фазометры.

Фазометр — электроизмерительный прибор, предназначенный для измерения углов сдвига фаз между двумя изменяющимися периодически электрическими колебаниями.

Если таких приборов нет, то измерять коэффициент мощности можно косвенным методом. Например, в однофазной сети косинус фи можно определить по показаниям амперметра, вольтметра и ваттметра:

Читайте также:  Оптимальная мощность специализированного онкологического отделения стационара составляет

cos φ = P / (U х I), где Р, U, I — показания приборов.

в цепи трехфазного тока cos φ = Pw / (√3 х Uл х Iл)

где Pw — мощность всей системы, Uл, Iл — линейные напряжение и ток, измеренные вольтметром и амперметром.

В симметричной трехфазной цепи значение косинус фи можно определить из показаний двух ваттметров Pw1 и Pw2 по формуле

Общая относительная погрешность рассмотренных методов равна сумме относительных погрешностей каждого прибора, поэтому точность косвенных методов невелика.

Численное значение косинус фи зависит от характера нагрузки. Если нагрузка чисто активная (лампы накаливания, нагревательные приборы), то cos φ = 1, если нагрузка содержит еще и асинхронные электродвигатели, то cos φ

Частота — одна из важнейших характеристик периодического процесса; определяется числом полных циклов (периодов) изменения сигнала в единицу времени.

Период — наименьший интервал времени, удовлетворяющий уравнению и(t) = и(t + Т). Мгновенная угловая частота определяется через производную во времени от фазы напряжения сигнала, т. е. ω(t) = dψ/dt. Так как фаза у гармонического сигнала растет во времени по линейному закону, то частота f — постоянная величина, т. е. f = 1/[(2π)( dψ/dt)] = ω(t) /(2 π ).

Частотомеры — приборы, измеряющие частоту.

Частота электрических сигналов измеряется методами непосредственной оценки и сравнения.

Измерение частоты методом непосредственной оценки производится цифровыми электронно-счетными частотомерами. Измерение частоты сигналов методом сравнения осуществляется с помощью осциллографа, частотомеров гетеродинных, построенных на биениях, и др. Цифровые частотомеры предназначаются для точных измерений частоты гармонических и импульсных сигналов; используются для измерения отношения частот, периода, длительности импульсов, интервалов времени.

Пример. Частотомер ЦД2120.2 — для измерения и индикации частоты и для коммутации цепей нагрузок при выходе измеряемой частоты за заданную уставку.

Область применения — на предприятиях энергетической промышленности для контроля качества вырабатываемой электроэнергии; на предприятиях — энергопотребителях.

· Диапазон измерения от 45 до 55 Гц при номинальной частоте измерения 50 Гц и дискретности измерения частоты 0,005 Гц.

· Входное напряжение цепи измерения (220 +44, -110) В; (100 +20, -50) В; (0,2 ± 0,1) В.

· Предел допускаемого значения основной погрешности 0,015 % во всем диапазоне измерения.

· Быстродействие — десять периодов измеряемой частоты.

· Питание частотомера осуществляется от источника переменного тока напряжением (200 ± 33) В или (100 ± 15) В и частотой (50 ± 5) Гц.

· Мощность, потребляемая частотомером, не более 10 ВА.

· количество коммутируемых цепей — 7;

· параметры коммутируемых цепей — напряжение постоянного и переменного тока (220±33) В, мощность до 10 ВА.

· Частотомер ЦД2120.2 имеет выход на внешний разъем результатов измерения частоты в двоично-десятичном коде 8-4-2-1 с ценой единицы наименьшего разряда кода 0,01 Гц, а также сигнала «конец измерения».

· Подключение внешних проводов выполнено под винт, что повышает защиту от случайных касаний токоведущих частей клемм.

· температура окружающего воздуха от 5 до 50 °С;

· относительная влажность 90 % при 20 °С.

· Габаритные размеры частотомера не более 80 х 160 х 250 мм.

· Масса частотомера не более 2 кг.

Фаза характеризует состояние гармонического сигнала в рассматриваемый момент времени. Для синусоидальной функции

u(t) = Umох sin (ωt + ψ) фаза гармонического сигнала (ωt + ψ) является линейной функцией времени.

Сдвиг по фазе у представляет собой модуль разности начальных фаз двух сигналов u(t)1 =Umох1 sin (ωt + ψ1) и u(t)2 = Umох2 sin (ωt + ψ2) одинаковой частоты:

Методы измерения сдвига по фазе зависят от диапазона частот, уровня, формы сигнала и требуемой точности измерения. Как правило, применяют методы непосредственной оценки и сравнения.

Читайте также:  Трансформатор номинальная мощность 800

Фазометры — приборы, измеряющие сдвиг по фазе в радианах или градусах.

К фазометрам непосредственной оценки относят: аналоговые электромеханические фазометры с логометрическими механизмами; аналоговые электронные фазометры с преобразованием фазового сдвига в пропорциональный ток; цифровые фазометры.

Измерение сдвига по фазе методом сравнения производится с помощью осциллографа. В широком диапазоне частот в маломощных цепях при грубых измерениях сдвиг по фазе измеряют с помощью осциллографа, а при более точных измерениях — методом сравнения, используя осциллограф в качестве индикатора равенства фаз.

На промышленной частоте при измерении сдвига по фазе применяют логометрические фазометры, использование которых рекомендуется при больших уровнях синусоидального сигнала и сопряжено с большим потреблением энергии и невысокой точностью. При точных измерениях сдвига по фазе используют аналоговые и цифровые электронные фазометры.

Сдвиг по фазе между напряжением U и током I на промышленной частоте измеряется вольтметром, амперметром и ваттметром и определяется по формуле φ = аrссоs [Р/(UI)].

Наибольшее распространение получили фазометры электродинамической системы, в которых неподвижная катушка включена последовательно с нагрузкой, а подвижные катушки — параллельно нагрузке, так, что ток одной из них отстает от напряжения на угол β1. Для этого последовательно с катушкой включена активно-индуктивная нагрузка, а ток другой опережает напряжение на некоторый угол β2, для чего включена активно-емкостная нагрузка, причем β1 + β2 = 90 о

Угол отклонения стрелки такого прибора зависит только от значения косинуса фи.

Для измерения фазового сдвига между двумя напряжениями часто применяют цифровые фазометры. В цифровых фазометрах прямого преобразования для измерения фазового сдвига его преобразуют в интервал времени и измеряют последний. Исследуемые напряжения подают на два входа прибора, на цифровом отсчетном устройстве прибора снимают показания числа импульсов, поступающих на счетчик прибора за один период исследуемых напряжений, которое соответствует фазовому сдвигу в градусах (или в долях градуса).

Из щитовых приборов, предназначенных для измерения, наиболее щитовой фазометр типа Д301, который может работать в однофазных сетях переменного тока с частотой 50, 500, 1000, 2400, 8000 Гц. Класс точности 2,5. Пределы измерений косинуса фи емкостного фазового сдвига от 0,5 до 1 и от 1 до 0,5 индуктивного фазового сдвига.

Последовательные цепи включают на ток 5 А непосредственно, а также через трансформатор тока, параллельные цепи включают непосредственно на 127, 220, 380 В, а также через измерительные трансформаторы напряжения

Цифровые измерения

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Измерение коэффициента мощности в цепях переменного тока

date image2015-04-08
views image3380

facebook icon vkontakte icon twitter icon odnoklasniki icon

Значения коэффициента мощности электрических установок переменного тока различны. Электрические лампы обладают, главным образом, активным сопротивлением, поэтому при их включении сдвиг фаз между током и напряжением практически отсутствует. Следовательно, для осветительной нагрузки коэффициент мощности можно считать равным единице. Коэффициент мощности для двигателей переменного тока зависит от нагрузки. При номинальной расчетной нагрузке двигателя cos? = 0,8-0,9, а у крупных двигателей даже выше. При недогрузке двигателей коэффициент мощности их резко снижается (при холостом ходе cos ? = 0,25-0,3).

Повышение коэффициента мощности. Cos ? повышают различными способами. Основной из них — включение параллельно приемникам электрической энергии специальных устройств, называемых компенсаторами. В качестве последних чаще всего используют батареи конденсаторов (статические компенсаторы), но могут быть применены также и синхронные электрические машины (вращающиеся компенсаторы).

Способ повышения cos ? с помощью статического компенсатора (рис. 202, а) называют компенсацией сдвига фаз, или компенсацией реактивной мощности. При отсутствии компенсатора от источника к приемнику, содержащему активное и индуктивное сопротивления, поступает ток i1который отстает от напряжения и на некоторый угол сдвига фаз ?1. При включении компенсатора Хспо нему проходит ток ic, опережающий напряжение и на 90°. Как видно из векторной диаграммы (рис. 202,б), при этом в цепи источника будет проходить ток i

Читайте также:  Формула мощности двигателя через скорость

Для полной компенсации угла сдвига фаз ?, т. е. для получения cos ? =1 и минимального значения тока Imin, необходимо, чтобы ток компенсатора Iс был равен реактивной составляющей I1p = I1 sin ?1тока I1.
При включении компенсатора 5 (см. рис. 200,б) источник 1 и электрическая сеть разгружаются от реактивной энергии 3, так как она циркулирует уже по цепи «приемник — компенсатор». Благодаря этому достигаются существенное повышение использования генераторов переменного тока и электрических сетей и уменьшение потерь энергии, возникающих при бесполезной циркуляции реактивной энергии между источником 1 и приемником 4.

Рис. 202. Схема, иллюстрирующая способ повышения cos ? с помощью компенсатора (а), и векторная диаграмма (б)

Компенсатор в этом случае выполняет роль генератора реактивной энергии, так как токи Iсв конденсаторе и I в катушке индуктивности (см, рис. 202,б) направлены навстречу один другому (первый опережает по фазе напряжение на 90°, второй отстает от него на 90°), вследствие чего включение компенсатора уменьшает общий реактивный ток Iр и сдвиг фаз между током I и напряжением U. При надлежащем подборе реактивной мощности компенсатора можно добиться, что вся реактивная энергия 3 (см. рис. 200,б), поступающая в приемник 4, будет циркулировать внутри контура «приемник — компенсатор», а генератор и сеть не будут участвовать в ее передаче. При этих условиях от источника 1 к приемнику 4 будет передаваться только активная мощность 2, т. е. cos ? будет равен единице.

В большинстве случаев по экономическим соображениям в электрических установках осуществляют неполную компенсацию угла сдвига фаз и ограничиваются значением cos ? = 0,95.

Измерение коэффициента мощности
Для прямого измерения cos φ и фазы применяются специальные электроизмерительные приборы — фазометры.

При отсутствии таких приборов коэффициент мощности можно определить косвенным методом по показаниям трех приборов :амперметра, вольтметра и ваттметра. Тогда в однофазной цепи
cos φ = P / (U х I),
где Р, U, I — показания ваттметра, вольтметра и амперметра, соответственно.
В симметричной трехфазной цепи
cos φ = Pw / (√3 х Uл х Iл);
где Pw – активная мощность трехфазной системы,
Uл, Iл – соответственно линейные напряжение и ток.
В симметричной трехфазной цепи значение коэффициента мощности можно определить также по показаниям двух ваттметров Pw1 и Pw2 по формуле

Коэффициент мощности величина не постоянная, он зависит от характера и величины нагрузки. Для асинхронного двигателя изменение нагрузки от нуля до номинальной приводит к изменению cos φ от 0,1 на холостом ходу до 0,86 — 0,87 при номинальной нагрузке. Для практических целей расчета мощности компенсирующих устройств в электрических сетях используют средневзвешенный коэффициент мощности за некоторый интервал времени — сутки или месяц. Для этого за рассматриваемый период снимают показания счетчиков активной и реактивной энергии Wa и Wр и расчитывают средневзвешенный коэффициент мощности по формуле

Компенсация реактивной мощности
Для уменьшения потерь, устранения перегрузок трансформаторов и линий электропередач прибегают к искусственному повышению коэффициента мощности электрических установок путем компенсации реактивной мощности непосредственно у потребителей с помощью батарей статических конденсаторов.

Энергетическая диаграмма, иллюстрирующая передачу электрической энергии между генератором Г и потребителем Д, потребляющим активную и реактивную энергию. а) — при отсутствии компенсатора, б) — при наличии его (батарея статических конденсаторов С) . Синим цветом показано поток активной энергии, красным – реактивной.

Источник