Меню

Импульсные источники питания для усилителей мощности



Импульсные источники питания для усилителей мощности

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Импульсный источник питания для усилителей

    3456507092.JPG

    Сейчас редко кто внедряет в самодельную конструкцию усилителя сетевой трансформатор, и правильно — импульсный бп более дешевый, легкий и компактный, а хорошо собранный почти не отдает помех в нагрузку (либо помехи сведены к минимуму).

    2316974801.JPG3451535361.JPG

    Разумеется, не спорю, сетевой трансформатор гораздо, гораздо надежней, хотя и современные импульсники, напичканные всевозможными защитами тоже неплохо справляются со своей задачей.

    4040845745.JPG

    IR2153 — я бы сказал уже легендарная микросхема, которая применяется радиолюбителями очень часто, и внедряется именно в сетевые импульсные источники питания. Микросхема из себя представляет простой полумостовой драйвер и в схемах иип работает в качестве генератора импульсов.

    1123726753.JPG

    На основе данной микросхемы строятся блоки питания от нескольких десятков до нескольких сотен ватт и даже до 1500 ватт, разумеется с ростом мощности будет усложняться схема.

    2215823407.png

    Тем не менее не вижу смысла делать иип высокой мощности с применением именно этой микросхемы, причина — невозможно организовать выходную стабилизацию или контроль, и не только Микросхема не является ШИМ контроллером, следовательно ни о каком ШИМ управлении не может идти и речи, а это очень плохо. Хорошие иип как право делают на двухтактных микросхемах ШИМ, к примеру ТЛ494 или ее сородичи и т.п, а блок на IR2153 в большей степени блок начинающего уровня.

    2140838929.JPG

    Перейдем к самой конструкции импульсного источника питания. Все собрано по даташиту — типичный полумост, две емкости полумоста, которые постоянно находятся в цикле заряд/разряд. От емкости этих конденсаторов будет зависеть мощность схемы в целом (ну разумеется не только от них). Расчетная мощность именно этого варианта составляет 300 ватт, мне больше и не нужно, сам блок для запитки двух каналов унч. Емкость каждого из конденсаторов 330мкФ, напряжение 200 Вольт, в любом компьютерном блоке питания как раз стоят такие конденсаторы, по идее схематика комповых бп и нашего блока в чем то схоже, в обеих случаях топология — полумост.

    943384257.JPG89837425.JPG

    На входе блока питания тоже все как положено — варистор для защиты от перенапряжений, предохранитель, сетевой фильтр ну и разумеется выпрямитель. Полноценный диодный мост, который можно и взять готовый, главное, чтобы мост или диоды имели обратное напряжение не менее 400 Вольт, в идеале 1000, и с током не менее 3Ампер. Разделительный конденсатор — пленка , 250 В а лучше 400, емкость 1мкФ, к стати — тоже можно найти в компьютерном блоке питания.

    2309383684.JPG3032895412.JPG

    Трансформатор Рассчитан по программе, сердечник от компового бп, габаритные размеры увы указать не могу. В моем случае первичная обмотка 37 Витков проводом 0,8мм, вторичная 2 по 11 витков шиной из 4-х проводов 0.8мм. С таким раскладом выходное напряжение в районе 30-35 Вольт, разумеется, намоточные данные будут у всех разные, в зависимости от типа и габаритных размеров сердечника.

    2082914500.JPG1095166324.JPG

    115774372.JPG998685204.JPG

    Все резисторы 0,25 ватт, кроме двух резисторов 51 Ом в снабберной цепи (они на 2 ватт) и резистора по питанию микры (тоже на 2, если есть, то ставьте на 5 ватт). Во время работы источника питания нагрев на указанных резисторах нормальное явление. Шаблон печатной платы можно скачать ниже, размеры уже установлены, зеркалить платку тоже нет необходимости.

    Источник

    Импульсные источники питания для усилителей мощности

    интересные РАДИОСХЕМЫ самодельные

    • ELWO
    • 2SHEMI
    • БЛОГ
    • СХЕМЫ
      • РАЗНЫЕ
      • ТЕОРИЯ
      • ВИДЕО
      • LED
      • МЕДТЕХНИКА
      • ЗАМЕРЫ
      • ТЕХНОЛОГИИ
      • СПРАВКА
      • РЕМОНТ
      • ТЕЛЕФОНЫ
      • ПК
      • НАЧИНАЮЩИМ
      • АКБ И ЗУ
      • ОХРАНА
      • АУДИО
      • АВТО
      • БП
      • РАДИО
      • МД
      • ПЕРЕДАТЧИКИ
      • МИКРОСХЕМЫ
    • ФОРУМ
      • ВОПРОС-ОТВЕТ
      • АКУСТИКА
      • АВТОМАТИКА
      • АВТОЭЛЕКТРОНИКА
      • БЛОКИ ПИТАНИЯ
      • ВИДЕОТЕХНИКА
      • ВЫСОКОВОЛЬТНОЕ
      • ЗАРЯДНЫЕ
      • ЭНЕРГИЯ
      • ИЗМЕРЕНИЯ
      • КОМПЬЮТЕРЫ
      • МЕДИЦИНА
      • МИКРОСХЕМЫ
      • МЕТАЛЛОИСКАТЕЛИ
      • ОХРАННЫЕ
      • ПЕСОЧНИЦА
      • ПРЕОБРАЗОВАТЕЛИ
      • ПЕРЕДАТЧИКИ
      • РАДИОБАЗАР
      • ПРИЁМНИКИ
      • ПРОГРАММЫ
      • РАЗНЫЕ ТЕМЫ
      • РЕМОНТ
      • СВЕТОДИОД
      • СООБЩЕСТВА
      • СОТОВЫЕ
      • СПРАВОЧНАЯ
      • ТЕХНОЛОГИИ
      • УСИЛИТЕЛИ

    Импульсные блоки питания постепенно вытесняют своих традиционных сородичей и в звукотехнике, поскольку и экономически и габаритно выглядят заметно привлекательней. Тот же фактор, что импульсные блоки питания вносят свою не малую лепку искажения усилителя, а именно появления дополнительных призвуковуже теряет свою актуальность в основном по двух причинам — современная элементная база позволяет конструировать преобразователи с частотой преобразования значительно выше 40 кГц, следовательно вносимые источником питания модуляции питания будут находиться уже в ультразвуке. Кроме этого более высокую частоту по питанию гораздо легче отфильтровать и использование двух Г-образных LC фильтров по цепям питания уже достаточно сглаживают пульсации на этих частотах.
    Конечно же есть и ложка дегтя в этой бочке меда — разница в цене между типовым источником питания для усилителя мощности и импульсным становиться более заметной при увеличении мощности этого блока, т.е. чем мощней блок питания, тем больше он выгодней по отношению к своему типовому аналогу.
    И это еще не все. Используя импульсные источники питания необходимо придерживаться правил монтажа высокочастотных устройств, а именно использование дополнительных экранов, подачи на теплоотводы силовой части общего провода, а так же правильной разводке земли и подключения экранирующих оплеток и проводников.
    После небольшого лирического отступления об особеностях импульсных блоков питания для усилителей мощности собсвенно принципиальная схема источника питания на 400Вт:

    Рисунок 1. Принципиальная схема импульсного блока питания для усилителей мощности до 400 Вт
    УВЕЛИЧИТЬ
    Управляющим контроллером в данном блоке питания служит TL494. Разумеется, что есть и более современные микросхемы для выполнения этой задачи, однако мы используем именно этот контроллер по двум причинам — его ОЧЕНЬ легко приобрести. В изготавливаемых блоках питания мы использем микросхемы фирмы Texas Instruments и качеством этих контроллеров ОЧЕНЬ довольны. Усилитель ошибки охвачен ООС, позволяющей добиться довольно большого коф. стабилизации (отношение резисторов R4 и R6). Более подробно о контроллере TL 494 можно почитать тут и тут.
    После контроллера стоит полумостовой драйвер IR2110, который собственно и управляет затворами силовых транзисторов. Исполльзование драйвера позволило отказаться от согласующего трансформатора, широко используемого в комьютерных блоках питания. Драйвер IR2110 нагружен на затворы через ускоряющие закрытие полевиков цепочки R24-VD4 и R25-VD5.
    Силовые ключи VT2 и VT3 работают на первичную обмотки силового трансформатора. Средняя точка, необходимая для получения переменного напряжения в первичной обмотке трансформатора формируется элементами R30-C26 и R31-C27.
    Моточные данные данные для сетевых импульсных источников питания на ферритовых кольцах проницаемостью 2000НМ сведены в таблицу 1.

    Последовательно с первичной обмоткой силового трансформатора включен трансформатор тока TV1, позволяющий контролировать протекающий через силовые ключи ток и строить на этом токовую защиту. Кроме этого используя выходное напряжение с трансформатора тока можно управлять оборотами вентилятора принудительного охлаждения (VT4).
    Вторичное питание состоит из трех двуполярных источников — два силовых для питания одного усилителя с двухуровневым питанием или двух усилителей с двуполярным питанием. Причем во втором случае величины выходных напряжений могут отличаться — более низкое для широкополосных, а более высокое для сабвуфера или же одинаковыми для раздельного питания каждого канала. Третье двуполярное напряжение используется для питания предварительных каскадов.
    Кроме этого имеется дополнительный однополярный источник напряжения используемый для питания контроллера TL494, полумостового драйвера IR2110 и реле мягкого старта.
    Выходное напряжение контролируется лишь по одному плечу двуполярного источника. Стаблизация остальных силовых напряжений производится при помощи дросселя групповой стабилизации L1.
    Если необходимо получить лишь один двуполярный силовой источник, то принципиальную схему можно упростить исключив не нужные элементы
    Для примера приведена принципиальная схема сетевого импульсного источника питания для УМЗЧ мощностью до 2000 Вт с двумя и одним двуполярным источниками напряжения.

    Читайте также:  Мощность слоя это расстояние


    Рисунок 2. Принципиальная схема импульсного блока питания с двумя двуполярными источниками и суммарной выходной мощностью до 2000 Вт

    Рисунок 3. Принципиальная схема импульсного блока питания с одним двуполярным источником и суммарной выходной мощностью до 2000 Вт

    Как видно из схем они отличаются лишь емкостями фильтров первичного питания и используемыми силовыми транзисторами. Емкость фильтров первичного питания расчитывается из отношения 1 мкФ на 1 Вт выходной мощности, а силовые транзисторя олжны иметь максимальный ток минимум на 30% больше чем ток протекающий через первичную обмотку силового трансформатора при максимальной мощности. Для большей наглядности емкости фильтров первичного питания и рекомендуемые силовые транзисторы сведены в таблицу

    Несколько слов об алгоритме работы данного блока питания:
    В момент подачи сетевого напряжения 220 В емкости фильтров первичного питания С15 и С16 заражаются через резисторы R8 и R11, что не позволяет перегрузиться лиолному мосту VD током короткого замыканияполностью разряженных С15 и С16. Одновременно происходит зарядка конденсаторов С1, С3, С6, С19 через линейку резисторов R16, R18, R20 и R22, стабилизатор 7815 и резистор R21.
    Как только величена напряжения на конденсаторе С6 достигнет 12 В стабилитрон VD1 «пробивается» и через него начинает течть ток заряжая конденсатор C18 и как только на плюсовом выводе этого конденсатора будет достигнута величина достаточная для открытия тиристора VS2 он откроется. Это повлечет включение реле К1, которое своими кнтактами зашунтирует токоограничивающие резисторы R8 и R11.Кроме этого открывшийся тиристор VS2 откроет транзистор VT1 и на контроллер TL494 и полумостовой драйвер IR2110. Контроллер начнет режим мягкого старта, длительность которого зависит от номиналов R7 и C13.
    Во время мягкого старта длительность импульсов, открывающих силовые транзисторы увеличиваются постепенно, тем самым постепенно заряжая конденсаторы вторичного питания и ограничивая ток через выпрямительные диоды. Длительность увеличивается до тех пор, пока величина вторичного питания не станет достаточной для открытия светодиода оптрона IC1. Как только яркость светодиода оптрона станет достаточной для открытия транзистора длительность импульсов перестанет увеличиваться (рисунок4).

    Рисунок 4. Режим мягкого старта.

    Читайте также:  Как посчитать суммарную мощность приборов

    Тут следует отметить, что длительность мягкого старта ограничена, поскольку проходящего через резисторы R16, R18, R20, R22 тока не достаточно для питания контроллера TL494 и драйвера IR2110 напряжение питания этих микросхем начнет уменьшаться и вскоре уменьшиться до величины, при которой TL494 перестанет вырабатывать импульсы управления. И именно до этого момента режим мягкого старта должен быть окончен и преобразователь должен выйти на нормальный режим работы, поскольку основное питание контроллер TL494 и дрейвер IR2110 получают от силового трансформатора (VD9, VD10 — выпрямитель со средней точкой, R23-C1-C3 — RC фильтр, IC3 — стабилизатор на 15 В) и именно поэтому конденсаторы C1, C3, C6, C19 имеют такие большие номиналы — они должны удерживать величнину питания контроллера до выхода его на обычный режим работы.
    Стабилизация выходного напряжения происходит путем изменения длительности импульсов управления силовыми транзисторами при неизменной частоте — Широтно Импульсная Модуляция — ШИМ. Это возможно лишь при условии, когда величина вторичного напряжения силового трансформатора выше требуемой на выходе стабилизатора минимум на 30%, но не более 60%.

    Рисунок 5. Принцип работы ШИМ стабилизатора.

    При увеличении нагрузки выходное напряжение начинает уменьшаться, светодиод оптрона ШС1 начинает светиться меньше, транзисторы оптрона закрывается, тем самым увеличивая длительность импульсов управления до тех пор, пока действующее напряжение не достигнет величины стабилизации (рисунок 5). При уменьшении нагрузки напряжение начнет увеличиваться, светодиод оптрона IC1 начнет светиться ярче, тем самым открывая транзистор и уменьшая длительность управляющих импульсов дотех пор, пока величина действующего значения выходного напряжения не уменьшиться до стабилизируемой величины. Величину стабилизируемого напряжения регулируют подстроечным резистором R26.
    Следует отметить, что контроллером TL494 регулируется не длительность каждого импулься в зависимости от выходного напряжения, а лишь среднее значение, т.е. измерительная часть имеет некотрую инерционость. Однако даже при установленных конденсаторах во вторичном питании емкостью 2200 мкФ провалы питания при пиковых кратковременных нагрузках не превышают 5 %, что вполне приемлемо для аппаратуры HI-FI класса. Мы же обычно ставим конденсаторы во вторичном питании 4700 мкФ, что дает уверенный запас на пиковые значения, а использование дросселя групповой стабилизации позволяет контролировать все 4 выходных силовых напряжения.
    Данный импульсный блок питания оснащен защитой от перегрузки, измерительным элементом которой служит трансформатор тока TV1. Как только ток достигнет критической величины открывается тиристор VS1 и зашунитрует питание оконечного каскада контроллера. Импульсы управления исчезают и блок питания переходит в дежурный режим, в котором может находиться довольно долго, поскольку тиристор VS2 продолжает оставаться открытым — тока протекающего через резисторы R16, R18, R20 и R22 хватает для удержание его в открытом состоянии.
    Для вывода блока питания из дежурного режима необходимо нажать кнопку SA3, которая своим контактами зашунтирует тиристор VS2, ток через него перестанет течь и он закроется. Как только контакты SA3 разомкнуться транзистор VT1 закроется тме самы снимая питания с контроллера и драйвера. Таким образом схема управления перейдет в режим минимального потребления — тиристор VS2 закрыт, следовательно реле К1 выключено, транзистор VT1 закрыт, следовательно контроллер и драйвер обесточены. Конденсаторы С1, С3, С6 и С19 начинают заряжаться и как только напряжение достигнет 12 В откроется тиристор VS2 и произойдет запуск импульсного блока питания.
    При необходимости перевести блок питания в дежурный режим можно воспользоваться кнопкой SA2, при нажатии на которую будут соеденены база и эмиттер транзистора VT1. Транзистор закроется и обесточит контроллер и драйвер. Импульсы управления исчезнут, исчезнут и вторичные напряжения. Однако питание не будет снято с реле К1 и повторного запука преобразователя не произойдет.
    Расположение деталей на печатной плате показано на рисунке 6. Сразу следует оговориться — этот импульсный блок питания не для начинающих, поэтому некоторые номиналы на чертеже не проставлены, чтобы более опытные смогли разобраться, а начинающих это должно остановить.


    Рисунок 6. Расположение деталей на плате сетевого импульсного блока питания для усилителей мощности до 1000 Вт.
    Немного крупнее и мощнее печатная плата показанная на рисунке 7. На ней установлены диоды вторичного питания в корпусе ТО-247, а в этом корпусе есть диоды с током до 80 А и 1200 В, а так же более крупный силовой трансформатор.

    Рисунок 7. Расположение деталей на плате сетевого импульсного блока питания для усилителей мощности до 1000 Вт.
    Немного о деталях:
    Силовой трансформатор мы изготавливаем на сердечниках от строчных трансформаторов телевизоров. Однако схожие параметры можно получить и на феритовых кольцах, правда частоту преобразования не стоит поднимать выше 70 кГц, поскольку даже уже на этой частоте феррит 2000 начинает греться из за внутренних потерь. В качестве дросселя групповой стабилизации мы используем сердечник от ТПИ. Обмотки распологаются встречно, как показанно на принципиальной схеме. Сечение проводников расчитывается из отношения 3-4 А на мм кв. Обмотки наматываются до заполнения окна. В случае использвания в качестве сердечника для дросселя групповой стабилизации ферритового кольца лучше использовать кольцо К40х25х11. Обмотки мотаются до уменьшения отверстия внутри до 14. 16 мм. В качестве дополнительных фильтрующих индуктивностей мы используем сердечники от фильтров сетевого питания телевизоров, но эти фильтры можно намотать и на кольцах диаметром 20. 25 мм. Обмотка мотается до заполнения, тем же проводом, что и дроссель групповой стабилизации.
    При необходимости получить блок питания для усилителя с двухуровневым питанием выходные напряжения блока питания следует соеденить по схеме рисунка 8.

    Рисунок 8. Схема соединений выходных напряжений для усилителя с двухуровневым питанием.

    Читайте также:  Мощности поглощенной дозы радиоактивного излучения

    НЕКОТОРЫЕ ОСОБЕНОСТИ ДАННЫХ БЛОКОВ ПИТАНИЯ
    Если повнимательней расмотреть принципиальную схему, то станет ясно, что контролируется лишь напряжение силовой части. Однако с этого же силового трансформатора производится и питание самой управляющей части блока. Поэтому без нагрузки в силовой части контролируеммое напряжение достигнув своей величины сократит длительность управляющих импульсов вплоть до их полного исчезновения. Это повлечет обесточивание контроллера TL4949 и драйвера IR2110 и блок питания просто отключится.
    Поэтому данный блок питания без нагрузки отрегулировать нельзя. Для регулировки в качестве нагрузки следует все силоывые напряжения нагрузить резисторами мощностью 2 Вт и сопротивлением 4,7к. 6,8к. При выходном напряжении 60. 90 В это будет имитировать ток покоя усилителй мощности. При более низком выходном напряжении сопротивление следует немного уменьшить.

    Источник

    Импульсный блок питания для усилителя мощности звуковой частоты.

    Решил попробовать «накормить» усилитель стабилизированным питанием.
    В сети интернет как оказалось не так уж и много схем таких БП, все завалено нестабилизированными БП на базе IR2153, был печальный опыт с этим контроллером и затею эту забросил
    * После тестов данного БП понял, что беда была не в контроллере *

    Решил переработать под свои нужды схему предложенную другом Сашей из группы в «Одноклассниках».

    Это лабораторный регулируемый по напряжению и току ИИП на самой известной микросхеме TL494.

    Сначала решил повторить оригинал и посмотреть как он работает — работает он отлично, — плату всунул в корпус своего старого лабораторного БП — построенного так-же на этом контроллере но в низковольтной части.

    Стабилизация напряжения отменная и ток до 8А ограниченный корпусом устройства, увеличив радиатор и 20А не потолок.
    Погоняв БП с разными нагрузками и при разном напряжении в сети, было решено собирать на этой схеме двух-полярник.

    На данном этапе от контроля тока отказался, — стабилизация напряжения «следит» за плюсовым плечом, отрицательное живет само по себе но «старается» быть зеркальным своему «соседу». Поскольку нагрузка на оба плеча симметрична то и перекоса напряжения в реальных условиях не наблюдается.

    ИИП

    Монтаж осуществлен на трех платах:
    1. Основной — силовой блок.
    2. Субмодуль ШИМ контроллера.
    3. Маломощный импульсный источник для питания схемы ШИМ.

    Для экономии пространства плата с ШИМкой установлена перпендикулярно основной плате рядом с силовыми ключами (транзисторами, ПП триодами, «Вентилями»), а низковольтный «питальник» прикручен к торцу основной платы слева, рядом с фильтром сетевого выпрямителя.

    Плата БП

    В качестве низковольтного БП применен ранее описанный блок питания .

    БП 12В

    В данном применении его родной сетевой выпрямитель не задействован, а схема питается от выпрямителя силовой части схемы.

    В дальнейшем планирую задействовать цепь ограничения тока, напряжение управления буду снимать с трансформатора тока включенного в первичную обмотку трансформатора.
    Импульсный трансформатор заимствован из АТХ блока питания.
    Первичная обмотка импульсного трансформатора содержит 40 витков провода диаметром 0,67мм, обязательно разделена на две части, половина под, половина над вторичной обмоткой. Вторичная намотана тем-же проводом но сложенным вдвое — количество витков зависит от требуемого напряжения, ориентировочно — 3,8В на одном витке.

    Дроссели фильтра намотаны на желто-белых кольцах дросселей групповой стабилизации компьютерных БП сложенным вдвое эмаль проводом 0,5мм и содержат по 75 витков.
    Кстати — у усилителя с таким БП улучшилась атака, из-за отсутствия просадки питания.
    Тех радиаторов, что на фото вполне достаточно для долгой работы на половинной громкости, — на полной долго не гонял ни разу ибо 50+Вт с самодельными АС на основе 50ГДН 3-30 в комнате 3,5Х4м реально громко и более одного трека уши не вывозят.
    * При тестах в УМЗЧ при нагрузке более 2А в плече вылетали транзисторы. А все по тому, что додумался трансформатор воткнуть из неудачного проекта на IR2153.

    БП на IR2153

    После перемотки трансформатора БП стал работать как положено, — пару раз на средней мощности усилителя коротились провода по пути к АС, искры, паника, вилку из розетки. Все обошлось удачно и для «Хитачиуса» и для блока питания.*

    Вот ТУТ архив со схемой и печаткой.
    На печатке цепь контроля тока на падении напряжения на шунте задействована, но в реальной конструкции она у меня отключена, а 16я ножка ШИМки заземлена, ибо как будет вести себя эта цепь при «сквозняках» УМЗЧ я не знаю.
    Спасибо за внимание и удачи!

    Просили рисунки плат в графическом формате.

    Импульсный блок питания для усилителя мощности звуковой частоты.

    Импульсный блок питания для усилителя мощности звуковой частоты.

    Это однополярный лабораторный БП с СМД обвязкой.
    А ниже двухполярник, который не сложно трансформировать в лабораторный.

    Источник