Меню

График зависимости удельного расхода топлива от мощности



Удельный расход топлива

Количество топлива, расходуемого в двигателе за единицу времени на единицу мощности, называется удельным расходом топлива.

— В зависимости от того, к какой мощности отнесен расход топлива,

1. удельный индикаторный расход

2. удельный эффективный расход топлива.

Слово «удельный» часто опускается. Эффективный расход топлива является важным параметром ДВС, всегда указан в заводском паспорте двигателя и является показателем экономичности двигателя по расходу топлива.

Единица измерения gi килограмм на джоуль (кг/дж) показывает количество топлива (в кг), которое затрачивается на получение 1 дж индикаторной работы в цилиндре.

Учитывая, что 1 вт=1 дж, получим 1 дж=1 вт∙1 сек.Значит, единицей измерения расхода топлива является кг/ (вт ∙ сек).*

В практике эксплуатации двигателей мощность принято измерять
в киловаттах (квт), а расход топлива указывать на час,

G-часовой расход топлива кг\час
Ni- индикаторная мощность кВт

При измерении мощности в лошадиных силах (л. с.) индикаторный расход топлива

определяют по соотношению 1 кВт = 1.36 л.с или 1л.с. = 0.775 кВт.

Удельный эффективный расход топлива находят следующим образом:

ge= gi\. ηм то есть эффективный расход топлива больше индикаторного расхода на величину механических потерь в двигателе

Индикаторный и эффективный расходы топлива для судовых дизелей равны:

Индикаторный gi: Главные Вспомогательные

в кг/квт∙ч 0,165—0,185 0,175—0,200

в кг/л. с. ч 0,120—0,135 — 0,130—0,145
эффективный ge

в кг/квт∙ч 0,200—0,225 0,220—0,250

в кг/л. с. ч 0,145—0,165 0,160—0,180

На данный момент достигнут самый низкий удельный эффективный расход топлива на двигателе Wartsila — Sulzer RTA FLEX 96 мощностью 108000 л.с с электронной системой управления подачи топлива в цилиндры(COMMON RAIL). Удельный же расход топлива на всех режимах колеблется в районе 118-126 граммов на лошадиную силу в час; что в 1,5-2,5 раза ниже, чем у автомобильных дизелей.

на графиках представлена зависимость удельного эффективного расхода топлива для ДВС с наддувом и без наддува. Очевидно, что у двигателя без наддува расход топлива больше, незначительное отличие только на 75% нагрузки.

В судовых условиях расход топлива замеряют при помощи мерных баков.

Объем среднего бачка известен, на мерном стекле в график зависимости Ne от ge

районе узких переходов между верхним и нижним бачками сделаны отметки.

При переключении расхода топлива на мерный бачок, фиксируют время расхода известного объема и затем вычисляют часовой расход топлива. Если при этом была известна мощность двс во время снятия расхода топлива график зависимости Ne от ge, об.мин ( например ДГ- по току и напряжению),то возможно

рассчитать удельный эффективный расход топлива. Для главных двигателей на речных судах по часовому расходу топлива определяют эффективную мощность по специальной монограмме зависимости расхода топлива от мощности.

На современных судах судовые силовые установки снабжаются электронными системами диагностики, которые позволяют с центрального поста управления контролировать все важные параметры СЭУ, в том числе удельный расход топлива.

Ответить на следующие вопросы:

Источник

Путевой расход топлива автомобиля.

Для каждого автотранспорта устанавливается государственная норма путевого расхода топлива.

Комплексным измерителем топливной экономичности автотранспортного средства является топливно-экономическая характеристика, представляющая собой график зависимости путевого расхода топлива gп от скорости Va установившегося движения по дорогам с различными коэффициентами дорожного сопротивления ψ. Она может быть построена либо по результатам стендовых или ходовых испытаний автомобиля, либо расчетным путём. Путевой расход топлива автомобиля показан на рисунке №7.

Для расчетного определения путевого расхода топлива необходимо иметь нагрузочную характеристику двигателя, представляющую собой график зависимости часовых Gт и удельных ge расходов топлива от эффективной мощности Ne, развиваемой двигателем при постоянной частоте ne. На основании графиков нагрузочной и внешней скоростной характеристик строят график удельного расхода топлива от степени использования мощности двигателя U% (ge=f(U%)). На основании данных тягового расчета и графика ge=f(U%) производится расчет топливно-экономической характеристики по формуле ,

где rт – плотность топлива, кг/л. В расчетах можно принять для бензина rт=0,72 кг/л.

Для построения топливно-экономической характеристики необходимо задаться несколькими значениями ne и для принятых передачи КП и дорожного сопротивления ψ найти силы сопротивления движению, а по экономической характеристике – значение ge. Однако, как правило, для рассчитываемого автомобиля экономическая характеристика двигателя отсутствует, поэтому удельные расходы топлива находят по приближенной методике с использованием коэффициентов К1 и КN по формуле ge=geNKNKn,

где Кn – коэффициент, учитывающий зависимость удельного расхода топлива от частоты вращения коленчатого вала двигателя;

КN – коэффициент, учитывающий зависимость удельного расхода топлива от степени использования мощности двигателя;

geN – эффективный удельный расход топлива при максимальной мощности двигателя Nemax, г/(кВт·ч).

Статистическая обработка нагрузочных характеристик различных двигателей позволила установить, что коэффициенты Кn и КN, могут быть посчитаны по формулам , ,

где a1, b1, c1 – эмпирические коэффициенты. Для карбюраторных двигателей a1=2,75 b1=4,61 c1=2,86.

Удельный эффективный расход топлива geN определяется либо по внешней скоростной характеристике двигателя, либо можно принять geN=(1,05-1,1)ge min. Таким образом, окончательная формула для расчета топливно-экономической характеристики двигателя имеет вид , эта формула называется уравнением расхода топлива. Топливно-экономическая характеристика рассчитывается для заданных значений суммарного дорожного сопротивления ψ при движении автомобиля от минимальной до максимальной скорости на той передаче, движение на которой возможно при полной подачи топлива.

После проведения расчетов и сравнения их с основными техническими требованиями, можно сделать выводы по каждой характеристике автомобиля ВАЗ – 2108.

Читайте также:  Как увеличить мощность страйкбольного автомата

Внешняя скоростная характеристика:

Мощность двигателя соответствует норме Nmax=47 кВт; Максимальный крутящий расчетный момент Мmax=99,9 Нм превышает на 5,9 Нм паспортный момент двигателя Mmax=94 Нм. Запас крутящего момента обеспечивает устойчивую работу двигателя, оценивается коэффициент приспосабливаемости. Для карбюраторных двигателей Кпр=1,2…1,3, стр. 45[6].

Тяговый баланс:

Из графика тягового баланса следует, что максимальная скорость Vamax=36 м/с (129,6км/ч) что не соответствует требованию (Vmax=148км/ч).

Мощностной баланс:

Максимальная скорость имеет такое же значение, что и Vmax в тяговом балансе. Запас мощности в точке пересечения Nд+в с N на III передаче будет равен нулю. Так как и на графике силового баланса, значение мощности будут выше, чем выше передача.

Динамический паспорт автомобиля:

Величина динамического фактора ДV при движении автомобиля с максимальной скоростью на графике равна (ДV=0,024), что не соответствует значениям динамического фактора, характерным для данного автомобиля (ДV=0,03-0,035).

Ускорение автомобиля:

Величина максимального ускорения на первой передаче (j=1,68 м/с 2 ) не входит в область примерных значений максимальных ускорений при разгоне (j=2,0-2,5 м/с 2 ), на высшей передаче величина максимального ускорения (j=0,34 м/с 2 ) меньше ориентировочных значений (j=0,8-2,1 м/с 2 ).

Время и путь разгона:

Согласно ГОСТ 22576-77, путь разгона до Vmax не должен превышать 2500м и время разгона 150 с. Из расчетов мы видим, что время и путь разгона соответствуют нормам.

Путевой расход топлива:

При V=90 км/ч контрольный расход топлива равен 5,7 л/100км, что не соответствует значению на графике расхода топлива при той же скорости ge=9,5 л/100км.

2 Сравнительный анализ тормозных механизмов автомобиля ВАЗ – 2108.

Тормозные механизмы.

Для оценки конструктивных схем тормозных механизмов служат следующие критерии:

Коэффициент тормозной эффективности – отношение тормозного момента, создаваемого тормозным механизмом, к условному приводному моменту ,

где Мтор – тормозной момент;

∑Р – сумма приводных сил;

rтр – радиус приложения результирующей сил трения (в барабанных тормозных механизмах – радиус барабана rб, в дисковых – средний радиус накладки rср).

Стабильность. Этот критерий характеризует зависимость коэффициента тормозной эффективности от изменения коэффициента трения. Эта зависимость представляется графиком статической характеристики тормозного механизма. Лучшей стабильностью обладают тормозные механизмы, характеризуемые линейной зависимостью.

Уравновешенность. Уравновешенными являются тормозные механизмы, в которых силы трения не создают нагрузку на подшипник колеса.

Так как имеются конструктивные различия тормозных механизмов передней и задней осей, необходимо провести сравнительный анализ обоих вариантов.

Источник

Часовой и удельный расход топлива

date image2014-02-24
views image15598

facebook icon vkontakte icon twitter icon odnoklasniki icon

Эффективная мощность

Мощность, полученная в цилиндрах двигателя, передаётся на коленчатый вал через КШМ. Передача энергии сопровождается механическими потерями, которые складываются из потерь на трение поршней о стенки цилиндров, в подшипниках коленчатого вала, механизме газораспределения, а также в механизмах, навешанных на двигатель и на «насосные» потери (в 4-х тактных ДВС).

Мощность полезная, развиваемая двигателем на фланце коленчатого вала, отдаваемая потребителю, называется эффективной мощностью (Ne), которая будет меньше индикаторной на величину механических потерь, затрачиваемых на трение и приведение в действие навесных механизмов. Тогда,

где, Nm — мощность механических потерь.

СРЕДНЕЕ ЭФФЕКТИВНОЕ ДАВЛЕНИЕ.

При определении эффективной мощности вводят понятие среднего эффективного давления (pe), которое выражается как:

Мы знаем, что такое pi ; аналогично вышесказанному можно придти к заключению, что среднее эффективное давление меньше среднего индикаторного на величину среднего давления механических потерь, т.е.

Тогда, подставляя в формулу индикаторной мощности вместо pi значение pe , получим Nе = 52,3D 2 ? pе ? Cm ? i [э.л.с.]

Используя формулу находят диаметр цилиндра D = √(Ne/52,3 ? Pe ? Cm ? z)

Крутящий момент — взаимосвязан с эффективной мощностью и характеризует нагрузку двигателя Me = 716,2 Ne/n [кГ ? м]

Эффективная мощность зависит от ряда параметров:

pе ? F ? S ? n ? k ? z

На основании этой зависимости строят графики, показывающие взаимосвязь мощности и параметров, определяющих её. Такие графики называются характеристиками двигателя. Различают скоростные, нагрузочные и винтовые характеристики.

Часовой расход топлива — измеряется в [кг/час] и применяется при нормировании топлива и отчётности (Gч).

Удельным называют часовой расход топлива, отнесённый к единице эффективной мощности. Gч

Связь между удельным расходом топлива и эффективным КПД устанавливается по формуле 632

Сравним значения удельного расхода топлива:

— малооборотные ДВС ge = 0,141-0.165 [кг/элс?ч]

— среднеоборотные ДВС ge = 0,150-0.165 [кг/элс?ч]

— высокооборотные ДВС ge = 0,165-0.180 [кг/элс?ч]

ПУТИ И СПОСОБЫ ПОВЫШЕНИЯ МОЩНОСТИ ДВС.

Увеличение мощности ДВС можно выполнить следующими способами:

1. Увеличением размеров цилиндров (диаметра — D, хода поршня — S) или количества цилиндров (z), при этом происходит увеличение габаритных размеров двигателя;

2. Повышением частоты вращения (числа оборотов — n), при этом снижается срок службы деталей т.к. растут скорости и силы инерции;

3. Переходом от 4-х тактных ДВС к 2-х тактным;

4. Наддувом двигателя, т.е. подачей в цилиндры воздуха под давлением, что позволяет сжечь больше топлива. Однако, механический наддув позволяет увеличить мощность при ухудшении экономических показателей, а газотурбинный — увеличить мощность при сокращении, или даже при некотором улучшении экономических показателей, например, если

Газотурбинный наддув 4-х тактных ДВС был осуществлён легко т.к. заполнение цилиндра и его очистка производится во время «насосных» ходов, а всасывающий и выхлопной тракты почти не сообщаются. Давление наддувочного воздуха может быть и больше и меньше давления выхлопа.

Читайте также:  Что означает термин установленная мощность

В 2-х тактных ДВС давление наддувочного воздуха должно быть больше давления в конце свободного выхлопа. Для этого должна быть достигнута мощность газов турбины, чтобы обеспечить давление наддува. Свободный выхлоп начинают раньше при большем давлении газов и уменьшают УОПТ. В результате этого, из-за догорания на линии расширения, температура газов и их кинетическая энергия будет больше. Кроме того, в наддутой машине уменьшается степень сжатия (E). Делается это для того, чтобы уменьшить Pc и Pz, и не допустить роста механических нагрузок.

Всё сказанное приводит к резкому ухудшению индикаторных показателей:

у ДВС с наддувом gi = 125-138 г/лс?ч;

у ДВС без наддува gi = 118-120 г/лс?ч.

Сохранение или даже улучшение эффективных показателей достигается за счёт резкого роста механического КПД. Он увеличивается потому, что механические потери при неизменных оборотах не растут т.к. Nm = f(n) ≈ const.

ТЕРМИЧЕСКИЙ, ИНДИКАТОРНЫЙ, ЭФФЕКТИВНЫЙ, МЕХАНИЧЕСКИЙ КПД.

Определение термического КПД было дано ранее. Несколько дополним его.

Термическим КПД называется отношение тепла, превращенного в полезную работу, ко всему подведенному теплу.

Термический КПД характеризует степень использования тепла в любой конструкции теплового двигателя, а следовательно, учитывает только тепловую потерю при отводе к холодильнику. Тогда формулу термического КПД можно написать в удобном для расчётов виде:

Термический КПД возрастает при увеличении степени сжатия, при увеличении показателя адиабаты k и при увеличении давления (степени повышения давления λ ).

Термический КПД снижается при увеличении степени предварительного расширения ρ .

Индикаторным КПД называется отношение количества теплоты, перешедшей в индикаторную работу (Qi), ко всему количеству теплоты, затраченной на получение этой работы (Qзатр). η i = Qi/Qзатрi=0,42-0,53).

632 — термический эквивалент 1 л.с..час [ккал]

Gч — часовой расход топлива;

Qр н – рабочая низшая теплотворная способность топлива.

Этот КПД характеризует тепловые потери с отработавшими газами, с охлаждающей водой, а также потери от неполноты сгорания топлива. Он учитывает всю сумму потерь тепла при осуществлении цикла. Это кроме тепла, уходящего с выхлопными газами, потери, обусловленные наличием теплообмена, неполным сгоранием топлива, недостаточно высокой скоростью сгорания топлива. Увеличение доли тепла, уходящего в стенки цилиндра и с выпускными газами, увеличение неполноты сгорания отрицательно сказывается на индикаторном КПД. С увеличением коэффициента избытка воздуха α индикаторный КПД как правило растёт.

В дизелях ηi ≈ 0.4-0.5

Эффективным КПД называется отношение количества теплоты, израсходованной на полезную работу двигателя (Qe), ко всему подведенному теплу (Q).

Он учитывает как тепловые, так и механические потери.

Зависимость между КПД выразится ηе= ηi ? ηm

На диаграмме показаны графики изменения КПД в зависимости от нагрузки при n=const. (η)

ηm ηi ηe

0 25 50 75 100 (Ne%)

Сравним дизеля с другими тепловыми машинами по эффективным значениям КПД:

— малооборотные ДВС ηе = 0.42-0.39 газовые турбины ηе = 0.42-0.31

— среднеоборотные ДВС ηе = 0.42-0.37 паровые машины ηе 0.30

— карбюраторные ДВС ηе = 0.20-0.28

Следовательно, по удельной затрате тепла, дизель самый экономичный. (ηе=0,35-0,42). Однако, в установках с паровыми турбинами применяется более дешёвый мазут и чем больше мощности, тем меньше разность в затратах у дизелей и паровых турбин. А так как турбины имеют ещё ряд преимуществ по сравнению с дизелями, то их на больших мощностях используют чаще. Дизеля сохраняют свою конкурентоспособность в установках мощностью до 45000 л.с.

Механическим КПД называется отношение эффективной мощности к индикаторной, или мощность механических потерь.

Механический КПД показывает ту часть индикаторной мощности, которую желательно бы превратить в полезную эффективную работу.

Этот КПД учитывает:

— потери на трение движущихся частей, которые зависят от: материалов, качества изготовления конструкции, обработки и сборки деталей, скорости движения отдельных узлов, давлений в сопряжениях (более половины этих потерь уходит на сопряжение втулка–поршень), качества масла, и т.д.;

— «насосные» потери. В 4-х тактных ДВС к «насосным» потерям относятся затраты энергии на преодоление сопротивлений при очистке цилиндров от продуктов сгорания. Они зависят от моментов открытия впускных и выпускных клапанов (см. круговую диаграмму газораспределения). При позднем открытии впускного клапана давление всасывания будет ниже. При позднем открытии выпускного — давление выпуска будет выше. В обоих случаях увеличивается площадь отрицательной работы. Мощность, затрачиваемая на «насосные» хода, при наддуве может превратиться в полезную работу. (Один из путей повышения КПД.)

— потери затрат мощности приводов навешанных на двигатель механизмов, (характеризует рациональность конструкции);

Для уменьшения механических потерь необходимо содержать и обслуживать двигатель в хорошем техническом состоянии. Поддерживать все необходимые зазоры в рекомендуемых заводом-изготовителем инструкциях, правильно выбирать качество и сорт смазочных материалов. Соблюдать соответствующие температурные режимы, регулировку нагрузки по цилиндрам, температуру воды, масла, чистоту коллекторов, и т.д.

Значения механического КПД

2-х тактные ДВС 4-х тактных ДВС без наддува ηm = 0.75-0.85 без наддува ηm = 0.75-0.85

с наддувом ηm = 0.86-0.93 с наддувом ηm = 0.85-0.95

ЭКСПЛУАТАЦИЯ ДВС

ВЛИЯНИЕ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ НА РАБОТУ ДИЗЕЛЯ.

При изменении нормальных атмосферных условий (температура t = 20°C; барометрическое давление Pбар = 760 мм.рт.ст.; относительная влажность φ = 70%) происходит изменение массового заряда воздуха в цилиндре, а именно: массовый заряд уменьшается при повышении температуры воздуха, при снижении барометрического давления, при увеличении относительной влажности воздуха.

Читайте также:  Как рассчитать коэффициент мощности трехфазной сети

При этом:

1. Уменьшается среднее индикаторное давление pi ;

2. Уменьшается коэффициент избытка воздуха α ;

3. Увеличивается температура выхлопных газов Tвг;

4. Увеличивается теплонапряжённость деталей ЦПГ;

5. Снижается мощность двигателя.

При повышении температуры воздуха, поступающего в цилиндры, уменьшается степень воздушного заряда, а следовательно и коэффициент избытка воздуха. Это приводит к ухудшению сгорания топлива и повышению его расхода. Уменьшается pi, а значит и мощность двигателя. Из-за повышения температуры воздушного заряда повысится температура выхлопных газов, а значит увеличится средняя температура цикла и теплонапряжённость двигателя.

Во избежание тепловой перегрузки двигателя необходимо контролировать его работу по максимальному давлению сгорания (Pz) и по температурам отработавших газов, не допуская их увеличения выше номинальных значений.

Для улучшения параметров необходимо уменьшать подачу топлива за цикл. Это вызывает падение pi и снижение оборотов гребного вала при работе на ВФШ и, как следствие, уменьшение скорости движения судна. В практике эксплуатации главных двигателей принято считать, что при увеличении температуры воздуха на 10°C необходимо либо снизить частоту вращения на 2%, либо уменьшить шаг винта на 3%.

При повышении влажности воздуха уменьшается содержание сухого воздуха в цилиндрах. При этом также изменится (α). В результате ухудшатся условия сгорания, а это также приведёт к уменьшению pi и следовательно — мощности двигателя. Температура газов несколько возрастёт, что будет приводить к перегрузке ДВС.

Кроме того, влияния влажности способствует изменению мощности и возникновению коррозии в цилиндрах двигателя, особенно при работе на сернистых топливах. Поэтому необходимо следить, чтобы во впускном тракте не создавались условия выпадения росы. Точка росы для каждого дизеля с наддувом и воздухоохладителем указывается в его паспорте и формуляре.

ХАРАКТЕРИСТИКИ ДВС.

Полное использование мощностей судовых дизелей — одна из главных задач судового механика. Важно, чтобы двигатель работал на такой мощности, которая не выходила бы за пределы его действительных возможностей. Чтобы грамотно решить этот вопрос необходимо знать характеристики дизеля и основы его взаимодействия с потребителем энергии. Режим работы дизеля характеризуется совокупностью параметров: мощностью, экономичностью, частотой вращения, тепловыми и механическими нагрузками.

Показатели работы двигателей условно подразделяются на:

1) энергетические — Ni, Ne, Me, pi, pe, n ;

2) экономические — Gч, ge, ε, (i) ;

3) эксплуатационные – давления и температуры, фиксируемые штатными приборами, а также ряд дополнительных параметров, дающих возможность судить о тепловой и механической напряжённости двигателя.

Тепловая напряжённость – в прямой зависимости от нагрузки, характеризуется средним индикаторным давлением или положением рейки ТНВД. Контролируются температуры выхлопных газов (Tв.г.), воды (Tв) и масла (Tм). В последнее время в судовых условиях производят замеры температуры втулок в верхней части цилиндров и в зоне продувочных окон, а также донышка поршня и рамовых подшипников.

Механическая напряжённость — основным критерием которого является максимальное давление сгорания топлива (Pz) и сила инерции движущихся масс (Pj).

Если при работе дизеля его параметры остаются постоянными, то режим называется установившимся. Переход от одного установившегося режима к другому может произойти самопроизвольно под влиянием путевых условий; автоматически — под воздействием регулятора; или вручную — путём воздействия оператором на рейку управления ТНВД.

При достаточном времени выдержки между режимами можно получить совокупность установившихся режимов, связанных между собой закономерным изменением параметров работы двигателя.

Совокупность установившихся режимов, представленная в виде аналитических, табличных или графических зависимостей от основного, заранее выбранного параметра, называется характеристикой дизеля. При этом, если за основной параметр принимают нагрузку, то характеристика называется нагрузочной, а если частоту вращения — то характеристика называется скоростной.

НАГРУЗОЧНЫЕ ХАРАКТЕРИСТИКИ

Зависимость параметров работы двигателя от его нагрузки при постоянной частоте вращения называется нагрузочной характеристикой. За независимое переменное принимается Ne или pe, или какое то их отношение, например pe/peном. На оси ординат откладываются любые, интересующие нас параметры. Как пример, рассмотрим характеристику ge=f(Ne).

Нагрузочные характеристики, снятые при различных оборотах, не совпадают между собой. Поэтому в эксплуатации строят графики совмещённых характеристик, по которым легко определить значение любого параметра, соответствующего данной нагрузке и частоте вращения.

Главные двигатели, при прямой передаче на винт и имеющие всережимный регулятор, в определённых условиях (при изменении нагрузки на винт на мелководье, на поворотах и т.д.) работают по нагрузочной характеристике, если положение органов управления регулятором остаётся неизменным.

Из графика видим, что при данном числе оборотов (n=const) минимальный удельный расход топлива приходится на режим ≈90% полной нагрузки. К сожалению работать постоянно на таком режиме двигатель не может, т.к. меняется и загрузка судна и окружающие условия (глубина фарватера, направление и сила ветра, течения и др.) Но учитывать это надо и при возможности добиваться работы на такой мощности.

Проще обстоит дело с загрузкой дизель-генераторов. Нагрузочная характеристика при номинальных оборотах (nном) приближённо отражает его работу на генератор.

СКОРОСТНЫЕ ХАРАКТЕРИСТИКИ

Скоростная характеристика — зависимость параметров двигателя от частоты его вращения. В зависимости от условий, при которых они получены, скоростные характеристики подразделяются на внешние , винтовые и ограничительные .

На рис. показан общий вид скоростной характеристики, где изменяя количество подаваемого топлива, мы получаем разные обороты и соответствующие им значения выбранных параметров (дв. 6Ч25/34).

Источник