Меню

Генератор как источник тока тип генераторов напряжение мощность



ЭЛЕКТРОГЕНЕРАТОРЫ

Виды электрогенераторов

Жизнь человека просто невозможна без электроэнергии. Если без телевизора, микроволновки или компьютера ещё можно обойтись, то система отопления, в основе которой энергозависимые котлы требует электропитания.

Как назло, отключения электричества чаще происходят в зимнее время. В данной статье предоставлена информация о видах, принципах действия и технических характеристиках в соответствии с которыми следует выбирать электрогенератор для дачи или частного дома.

КЛАССИФИКАЦИЯ ЭЛЕКТРОГЕНЕРАТОРОВ ПО ТИПУ ТОПЛИВА

Модели современных электрогенераторов отличаются по ряду параметров: автоматика (АВР), мощность, количество фаз, способ запуска.

Однако, параметром, оказывающим главное влияние на технические и эксплуатационные характеристики оборудования, является тип топлива.

Цена бензиновых электрогенераторов наиболее доступна среди устройств с сопоставимыми эксплуатационными характеристиками. Однако стоимость обслуживания и эксплуатации –высокая, из-за дорогого топлива. Кроме того, они имеют моторесурс, в среднем до 5000 часов.

Мощность до 15 кВт. Однако наиболее распространенны устройства мощностью 4-7 кВт. Бензиновые электрогенераторы имеют компактные размеры и небольшой вес, свободно помещаются в багажнике автомобиля. Это делает их популярными источниками электроэнергии на выездах: для отдыха, подключения электроинструмента и т.п.

Используются преимущественно в качестве аварийных источников энергии. Для обслуживания газового котла, телевизора и освещения в доме подойдут однофазные устройства мощностью 5 кВт. Объективно, они могут включаться 5-10 раз в год на 3-5 часов.

Так что такие недостатки как низкие моторесурс и дорогостоящие топливо не окажут ощутимого влияния на эксплуатацию.

Дизельные устройства используются преимущественно в качестве стационарных резервных электрогенераторов для дома или постоянных – на строительных площадках, когда выработка электричества необходима на период 10-15 часов в день.

Мощность дизельных электрогенераторов от 5 до 25 кВт, позволяет подключать большое количество энергоемкого строительного оборудования. Дизель-генераторы обладают большими габариты и весом. Моторесурс, 15 – 25 тыс. часов, что превосходит другие типы электрогенерирующего оборудования на жидком топливе.

Устройства надежно функционируют в широком диапазоне температур и влажности. Они экономны, а учитывая стоимость дизельного топлива, их эксплуатация обойдётся дешевле, чем бензиновых аналогов.

Одним из немногочисленных недостатков дизельных электрогенераторов является высокая шумность. Для использования в домашних условиях такое оборудование необходимо устанавливать подальше от жилых помещений.

Электрические генераторы только на газовом топливе встречаются редко. Гораздо чаще можно увидеть гибридные устройства, где возможность работы на баллонном газе сочетается с дизельным или бензиновым топливом.

При этом технические параметры электроэнергии (мощность, частота, напряжение), вырабатываемой генератором идентичны при любом виде топлива. Стоимость эксплуатации такого устройства (при работе с газом) ниже, чем бензиновых и дизельных генераторов. Однако изначальная цена у такого оборудования самая высокая.

Размеры газового электрогенератора сопоставимы с дизельным. Уровень шума при работе на газу ниже, чем у жидкотопливных устройств, при работе на бензине или солярке, сопоставим с аналогичными жидкостными генераторами. Моторесурс до 10 тыс. часов.

ИНВЕРТОРНЫЕ ЭЛЕКТРОГЕНЕРАТОРЫ

Сравнительно недавно, на рынке бытового генерирующего оборудования, появился новый тип электрогенераторов – инверторные. Их отличие от традиционных бензиновых или дизельных генераторов состоит в наличии дополнительных устройств – преобразователя и регулятора.

Здесь необходимо сделать отступление. Дело в том, что параметры электрического тока генератора средний ценовой категории далеки от оптимальных. В широких диапазонах может изменяться напряжение, частота переменного тока и мощность. Это зависит не только от качества оборудования.

Хотя, покупая дешёвые китайские генераторы со множеством функций и обещанием мощности 10-12 кВт, вы должны понимать, что за это придётся расплачиваться долговечностью оборудования и стабильностью работы.

Также влияние оказывают и внешние эксплуатационные факторы:

  • низкое качество топлива;
  • ресурс двигателя;
  • температура и влажность окружающей среды;
  • увеличение нагрузки на генератор со стороны потребителя. К примеру, пусковой ток, возникающий при включении нового устройства и т.п.

В отличие от обычных электрогенераторов у инверторных выработанный высокочастотный переменный ток не идет напрямую к потребителю.

Сначала он проходит выпрямитель, где преобразуется в постоянный. После чего направляется в емкостный фильтр. Стабилизатор нормализует эксплуатационные показатели. После этого постоянный ток при помощи инвертора вновь преобразуется в переменный. Но уже чистый, с отклонением амплитуды синусоиды не более 2,5%.

Стоимость инверторных генераторов гораздо выше. Однако они имеют преимущества:

  • точное соответствие параметров электричества заявленным показателям;
  • компактные размеры и небольшой вес;
  • всепогодность – модели с закрытым корпусом могут использоваться на открытой местности во время дождя;
  • широкий диапазон мощности (2-8 кВт) при экономном расходе жидкого топлива.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

1. Тип двигателя:

  • двухтактный — используется в электрогенераторов мощностью до 1 кВт. Экономные, но имеет ограниченный моторесурс;
  • четырёхтактный — используется в инверторных, газовых и дизельных электрогенераторах большой мощности.

2. Количество оборотов — данный параметр влияет на продолжительность непрерывного функционирования. Принято различать устройства по следующим параметрам:

  • до 3 тыс. об/мин. непрерывная работа до 5-8 часов;
  • до 1,5 тыс. об/мин. непрерывная работа до 2-3 суток у бензиновых, до 5-7 суток у дизельных и более 10 суток у газовых генераторов.

3. Мощность электрогенератора:

  • бензиновый до 20 кВт;
  • дизельный до 50 кВт;
  • газовые до 50 кВт.*

* имеются в виду компактные переносные генераторы для бытового использования, а не стационарные электростанции, мощность которых может достигать нескольких мегаватт.

4. Принцип генерации электрического тока:

  • асинхронный — рекомендуется использовать, если потребляющее оборудование характеризуется небольшими изменениями пусковой мощности (пусковой коэффициент близок к единице);
  • синхронный — выдерживает высокие пусковые нагрузки, рекомендуется применять для питания оборудования чувствительного к качеству электричества.

5. Количество фаз:

  • однофазный;
  • трёхфазный.

6. Способ запуска:

  • ручной;
  • электростартер (также имеется и ручной стартер);
  • автоматический запуск при отключении объекта от внешнего электроснабжения.

7. Способ охлаждения:

  • воздушный — для маломощных устройств до 3-4 кВт (на бензиновых почти на всех, независимо от мощности);
  • жидкостный — на дизель генераторах начиная с 5 кВт, помогает избежать перегрева при длительной эксплуатации.

Анализируя основные характеристики электрогенератор можно прийти к следующим выводам:

1. Двухтактные бензиновые электрогенераторы, мощностью 0,7 — 1,5 кВт можно использовать в качестве аварийных источников электроснабжения на несколько часов для подключения 2-3 электроприборов не требовательных к качеству электричества.

2. Четырехтактные инверторные бензиновые электрогенераторы, мощностью 2-4 кВт используются как аварийные источники электроснабжения для непрерывной работы на 5-6 часов для подключения 6-7 электроприборов чувствительных к количеству электричества.

Читайте также:  Производственная мощность предприятия может быть определена по формуле

3. Дизельные генераторы рекомендуется применять, как резервные источники, если необходимо длительное обеспечение электричеством — 10-15 часов непрерывной работы.

4. Газовые генераторы могут использоваться в качестве альтернативных источников электричества, обеспечивающих электроснабжением дом и все бытовые приборы наиболее длительный период — несколько суток.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Источник

Типы генераторов

Часто можно услышать о применение генератора для решения различных бытовых вопросов, но мало кто может себе представить принцип работы устройства и область его применения. Электрогенератор – устройство, вырабатывающее электроэнергию и состоящее из двигателя и узла, которые и отвечают за выработку электричества. Наиболее часто для бытового применения приобретаются генераторы дизельные, газовые или бензиновые.

Виды генераторов

Бензиновые генераторы – мини электростанции, где применяется бензиновый двигатель внутреннего сгорания. Используются в качестве установок для резервной подачи электричества и могут беспрерывно работать до 12 часов.

Генераторы , работающие на дизельном топливе, могут быть использованы как в качестве основного энергетического источника, так и в случае аварии. Беспрерывно работают более 12 часов.

Устройства подразделяются на:

Разница между генераторами

Работает в режиме постоянной генерации энергии.

Работает в режиме торможения.

Высокая стабильность выхода тока

Невысокая стоимость устройства;

Класс защиты устройства выше, чем у СГ за счет более простой конструкции.

Наличие щеточного узла (требует обслуживания);

Перезагрузка по току;

Потребляют постоянно намагничивающий ток большой силы;

Для корректной работы потребуется установка конденсаторов;

Не обладают достаточной надежность в режиме работы чрезвычайной ситуации;

Прямая зависимость параметров частоты и тока от работы двигателя.

Главное достоинство синхронных устройств – стабильный выход напряжения, чем обусловлено их частое применение. Асинхронные устройства используются редко, так как они не способны обеспечить безопасную работу в чрезвычайных ситуациях.

Выделяют еще один тип устройства – инверторный. Вырабатывает электроэнергию по качеству выше, чем синхронный и асинхронный генераторы, поэтому может быть применим для подключения устройств, проявляющих чувствительность к качеству поступающего тока.

Дизельные генераторы – хорошо подойдут для длительной работы. могут обеспечить бесперебойное поступление энергии. в качестве преимуществ стоит отметить мощность, долговечность и надежность. По стоимости такое оборудование обойдется дороже, чем бензиновый генератор, тем не менее затраты быстро окупятся благодаря невысокому расходу топлива.

Газовые генераторы – используется если необходима подача электроснабжения на постоянной основе, реже как источник резервного питания. Основное преимущество – работа от газа, что значительно экономит средства. Подключение возможно и к магистрали, и к портативному газовому баллону. Устройство более экологично.

Что важно знать при выборе генератора?

Особое внимание стоит уделить выбору генератора. При этом стоимость – не главный фактор, от которого стоит отталкиваться. Не всегда более дорогая установка сможет качественно выполнять заявленные функции, поэтому, при выборе следует обратить внимание на:

· качество сборки устройства;

Чаще всего в первую очередь смотрят на стоимость и мощность устройство, а только потом на потребление топлива, громкость работы, вес, группу – однофазный или трехфазный.

Однофазный подразумевает работу только с однофазными устройствами-потребителями энергии (220В), поэтому если необходимо подключение трехфазных потребителей (380В), то приобретать лучше трехфазной устройство

На что стоит обращать внимание при покупке:

1. Назначение. Бывают электрогенераторы бытового и профессионального назначения. Бытовые имеют небольшой размер и меньшую мощность (не более 4кВт), а при длительной работе – около 4-х часов система требует охлаждения. Прибор чаще всего используется в виде резервного источника питания, когда отключение электричества носит кратковременный характер.

Профессиональные устройства обладают мощностью до 30 кВт и четырехтактным двигателем. Могут беспрерывно работать в течение 10 часов, поэтому могут выступать в качестве источников питания на крупных предприятиях.
Установка подобного оборудования требует наличие свободного, отдельного помещения.

2. Мощность. Все типы генераторов входят в 4 группы мощности: 0,35-1,5кВт – применяемые для мобильной эксплуатации; 2-4кВт – для дач или домов небольшой площади; 5-15кВт – для использования в промышленности или для обеспечения электроэнергией коттеджей по сезону; 15кВт и более – для полного обеспечения электроэнергией жилых домов или промышленных зданий, круглогодично.

3. Тип двигателя. Для бензиновых генераторов характерны двух- или четырехтактные ДВС. Двухтактный применяется в устройствах с небольшой мощностью, является более экономичным в использовании, не вызывает сложностей при эксплуатации и имеет невысокую стоимость.

Четырехтактный – подходит для длительного использования или если необходимо обеспечение работоспособности мощных устройств. Работает не так шумно, как двухтактный, является более экологичным.

4. Тип охлаждения. Все генераторы, работающие от бензина, охлаждаются посредством воздуха или воды. Воздушное охлаждение может быть замкнутым или проточным. При водяном типе для охлаждения может быть использована как вода, так и специализированные охлаждающие жидкости.

5. Время работы. Портативные генераторы могут работать до трех часов, а промышленные – более 20 часов. естественно, что у последних мощность, стоимость и расход топлива будет в разы выше.

6. Запуск. Устройство может быть запущено ручным и электрическим способом. Ручной характерен для переносных устройств и ряда недорогих моделей. Электрический запуск значительно упрощает включение агрегата в зимний период, но и стоимость его выше, чем у первого.

7. Также принято разделять генераторы по типу конструкции на портативные и рамные. Портативные чаще используются чтобы организовать кратковременную подачу энергии на месте аварии. Устройство представляет собой небольшой чемодан, который полностью защищен со всех сторон стенками. Рамные генераторы представляют собой цельную раму, на которой закреплены узлы устройства, обеспечивающие его работу.

Стоимость бензиновых ниже, чем их дизельных аналогов.

Монтаж генератора

Как и в отношении любых других устройств, монтаж генераторной установки начинается с подготовки специальной площадки или помещения, где он будет расположен.

Дизельные устройства могут быть установлены на анкера, закрепленные в бетонном покрытии пола, поверхность которого должна быть достаточно ровной. Неровности или наклон приведет в итоге к выходу из строя основных систем генератора.

Если устройство устанавливается внутри помещения, то заранее стоит позаботиться и проведении туда системы вентиляции и звукоизоляции, так как для корректной работы устройства требуется постоянное движение воздуха в помещении. Звукоизоляция же поможет сделать работу генератора менее заметной для окружающих.

Читайте также:  Бульдозер мощностью 243 квт 330 л с

После того, как оборудование было закреплено, подключается силовой кабель. Установка генератора невозможна без использования распределительного щита с автоматом. Это позволит контролировать нагрузку на систему и подключить блок управления в соответствие с правилами безопасности.

Стоит понимать, что установка генераторов любого типа подразумевает обращение к специалистам. Самостоятельное подключение устройств запрещено – не имея должного опыта работы с подобным оборудованием его можно просто повредить или вывести из строя в момент установки.

Источник

Генератор постоянного тока: устройство, принцип работы, классификация

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Принцип действия генератора постоянного тока

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinw t; e2 = -Blvsinw t; , где B магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t время, w t – угол, под которым рамка пересекает магнитный поток.

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

График тока, выработанного примитивным генератором

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Ротор генератора

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

Читайте также:  Конфигуратор меркурий 230 профиль мощности

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Внешняя характеристика ГПТ

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Характеристика ГПТ с параллельным возбуждением

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Внешняя характеристика генератора с последовательным возбуждением

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Внешняя характеристика ГПТ со смешанным возбуждением

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

Источник