Меню

Формулы для касательных напряжений при чистом кручении валов



ISopromat.ru

Кручением называется такой вид деформации бруса, при котором в его поперечных сечениях возникает только один внутренний силовой фактор – крутящий момент T.

Брусья, испытывающие кручение, принято называть валами.

Внутренний крутящий момент

Внутренние скручивающие моменты появляются под действием внешних крутящих моментов mi, расположенных в плоскостях, перпендикулярных к продольной оси бруса.

Скручивающие моменты передаются на вал в местах посадки зубчатых колес, шкивов ременных передач и т.п.

Величина крутящего момента в любом сечении вала определяется методом сечений:

т.е. крутящий момент численно равен алгебраической сумме скручивающих моментов mi, расположенных по одну сторону от рассматриваемого сечения.

Правило знаков внутренних скручивающих моментов:
Положительными принимаются внутренние моменты, стремящиеся повернуть рассматриваемую часть вала против хода часовой стрелки, при рассмотрении со стороны отброшенной части вала.

В технике наиболее широко используются валы круглого поперечного сечения.

Теория кручения круглых валов основана на следующих гипотезах:

  1. поперечное сечение, плоское до деформации вала, остается плоским и после деформации;
  2. радиусы, проведенные мысленно в любом поперечном сечении, в процессе деформации вала не искривляются.

Напряжения при кручении

В поперечных сечениях вала при кручении имеют место только касательные напряжения.
Касательные напряжения, направленные перпендикулярно к радиусам, для произвольной точки, отстоящей на расстоянии ρ от центра, вычисляются по формуле:

где Iρ — полярный момент инерции.
Эпюра касательных напряжений при кручении имеет следующий вид:

Касательные напряжения меняются по линейному закону и достигают максимального значения на контуре сечения при ρ= ρmax:

Здесь:

— полярный момент сопротивления.
Геометрические характеристики сечений:
а) для полого вала:


б) для вала сплошного сечения (c=0)

в) для тонкостенной трубы (t 0,9)

где

— радиус срединной поверхности трубы.

Деформации

Деформации валов при кручении заключаются в повороте одного сечения относительно другого.

Угол закручивания вала на длине Z определяется по формуле:

Если крутящий момент и величина GIρ, называемая жесткостью поперечного сечения при кручении, постоянны, для участка вала длиной l имеем:

Угол закручивания, приходящийся на единицу длины, называют относительным углом закручивания:

Расчет валов сводится к одновременному выполнению двух условий:

  1. условию прочности:
  2. условию жесткости:

Для стальных валов принимается:

  • допускаемое касательное напряжение
  • допускаемый относительный угол закручивания

Используя условия прочности и жесткости, как и при растяжении – сжатии можно решать три типа задач:

  1. проверочный расчет, заключающийся в проверке выполнения условий прочности и жесткости при известных значениях крутящего момента, размеров и материала вала.
  2. Проектировочный расчет, при котором вычисляются диаметры:

    при этом берется большее из найденных значений, а затем принимается стандартное значение по ГОСТ.
  3. Определение грузоподъемности вала:
    • из условия прочности
    • из условия жесткости

Из двух найденных значений крутящего момента необходимо принять меньшее.

При кручении, наряду с касательными напряжениями в поперечных сечениях, в соответствии с законом парности, касательные напряжения возникают и в продольных сечениях. Таким образом, во всех точках вала имеет место чистый сдвиг.

Главные напряжения σ1 = τ, σ3 = -τ наклонены под углом α=±45 о к образующей.

Потенциальная энергия упругой деформации определяется по формуле

или для участка вала при постоянном T и GIρ

Источник

ISopromat.ru

τ — касательные напряжения,
T – внутренний крутящий момент,
Ip – полярный момент инерции сечения вала,
Wp – полярный момент сопротивления сечения,
[ τ ] – допустимое напряжение,
G – модуль упругости II рода (модуль сдвига),
ρ — расстояние от центра сечения до рассматриваемой точки,
D – внешний диаметр вала,
d – внутренний диаметр вала кольцевого сечения.

Закон Гука при кручении (чистом сдвиге)

Закон Гука при кручении

Расчет касательных напряжений в произвольной точке сечения вала

Формула для расчета касательных напряжений в сечении вала

Условие прочности вала при кручении

Формулы полярных моментов инерции и сопротивления

  • для вала сплошного (круглого) сечения
    Формулы для вала круглого сечения
  • для вала кольцевого сечения
    Формулы для вала кольцевого сечения

Формулы для подбора диаметра вала по условию прочности

  • сплошное круглое сечение
    Подбор диаметра вала круглого сечения (формула)
  • кольцевое сечение
    Формула расчета внешнего диаметра вала кольцевого сечения

Абсолютные деформации (угол закручивания участков вала)

Источник

Тема 2.5. Кручение. Напряжения и деформации при кручении

Иметь представление о напряжении и деформациях при кру­чении, о моменте сопротивления при кручении.

Знать формулы для расчета напряжений в точке поперечного сечения, закон Гука при кручении.

Напряжения при кручении

Проводим на поверхности бруса сетку из продольных и поперечных линий и рассмотрим рисунок, об­разовавшийся на поверхности после деформации (рис. 27.1а). Поперечные окружности, оставаясь плоскими, по­ворачиваются на угол (р, продольные линии искривляются, прямоугольники превращаются в параллелограммы. Рассмотрим элемент бруса 1234 после деформации.

При выводе формул используем закон Гука при сдвиге и гипоте­зы плоских сечений и неискривления радиусов поперечных сечений.

При кручении возникает напряженное состояние, называемое «чистый сдвиг» (рис. 27.1 б).

При сдвиге на боковой поверхности элемента 1234 возникают касательные напряжения, равные по величине (рис. 27.1в), элемент деформируется (рис. 27.1 г).

Материал подчиняется закону Гука. Касательное напряжение пропорционально углу сдвига.

Закон Гука при сдвиге

G — модуль упругости при сдвиге, Н/мм 2 ; γ — угол сдвига, рад.

Напряжение в любой точке поперечного сечения

Рассмотрим поперечное сечение круглого бруса. Под действием внешнего момента в каждой точке поперечного сечения возникают силы упругости dQ (рис. 27.2).

где τ — касательное напряжение; dA — элементарная площадка.

В силу симметрии сечения силы dQ образуют пары (см. лек­цию 26).

Элементарный момент силы dQ относительно центра круга

где ρ— расстояние от точки до центра круга.

Суммарный момент сил упругости получаем сложением (инте­грированием) элементарных моментов:

После преобразования получим формулу для определения на­пряжений в точке поперечного сечения:

При ρ = 0 τ к = 0; касательное напряжение при кручении пропорционально расстоянию от точки до центра сечения.

Полученный интеграл J v (лекция 25) называется полярным мо­ментом инерции сечения. J v является геометрической характеристи­кой сечения при кручении. Она характеризует сопротивление сече­ния скручиванию.

Анализ полученной формулы для J v показывает, что слои, рас­положенные дальше от центра, испытывают большие напряжения.

Эпюра распределения касательных напряжений при кручении (рис. 27.3)

М к — крутящий момент в сече­нии;

рв — расстояние от точки В до центра;

тв — напряжение в точке В]

ттах — максимальное напряже­ние.

Максимальные напряжения при кручении

Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности.

Определим максимальное напряжение, учитывая, что ρ та х = d/2, где d — диаметр бруса круглого сечения.

Для круглого сечения полярный момент инерции рассчитывает­ся по формуле (см. лекцию 25).

Максимальное напряжение возникает на поверхности, поэтому имеем

Обычно J P/p max обозначают W p и называют моментом сопро­тивления при кручении, или полярным моментом сопротивления сечения

Таким образом, для расчета максимального напряжения на поверхности круглого бруса получаем формулу

Для круглого сечения

Для кольцевого сечения

Условие прочности при кручении

Разрушение бруса при кручении происходит с поверхности, при расчете на прочность используют условие прочности

где [ τ к] — допускаемое напряжение кручения.

Виды расчетов на прочность

Существует два вида расчета на прочность.

1. Проектировочный расчет — определяется диаметр бруса (вала) в опасном сечении:

2. Проверочный расчет — проверяется выполнение условия прочности

3. Определение нагрузочной способности (максимального крутящего момента)

Расчет на жесткость

При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

При кручении деформация оцени­вается углом закручивания (см. лекцию 26):

Здесь φ — угол закручивания; γ — угол сдвига; l — длина бруса; R — радиус; R =d/2. Откуда

Закон Гука имеет вид τ к = G γ. Подставим выражение для γ, получим

Произведение GJ P называют жесткостью сечения.

Модуль упругости можно определить как G = 0,4 Е. Для стали G = 0,8 • 10 5 МПа.

Обычно рассчитывается угол закручивания, приходящийся на один метр длины бруса (вала) φ o.

Условие жесткости при кручении можно записать в виде

где φ o — относительный угол закручивания, φ о = φ/l; [φ о] ≈ 1град/м = 0,02рад/м — допускаемый относительный угол закручивания.

Примеры решения задач

Пример 1. Из расчетов на прочность и жесткость определить потребный диаметр вала для передачи мощности 63 кВт при скорости 30 рад/с. Материал вала — сталь, допускаемое напряжение при кручении 30 МПа; допускаемый относительный угол закручивания [φ о] = 0,02рад/м; модуль упругости при сдвиге G = 0,8 * 10 5 МПа.

1. Определение размеров поперечного сечения из расчета на прочность.

Условие прочности при кручении:

Определяем вращающий момент из формулы мощности при вращении:

Из условия прочности определяем момент сопротивления вала при кручении

Значения подставляем в ньютонах и мм.

Определяем диаметр вала:

2. Определение размеров поперечного сечения из расчета на жесткость.

Условие жесткости при кручении:

Из условия жесткости определяем момент инерции сечения при кручении:

Определяем диаметр вала:

3. Выбор потребного диаметра вала из расчетов на прочность и жесткость.

Для обеспечения прочности и жесткости одновременно из двух найденных значений выбираем большее.

Полученное значение следует округлить, используя ряд пред­почтительных чисел. Практически округляем полученное значение так, чтобы число заканчивалось на 5 или 0. Принимаем значение d вала = 75 мм.

Для определения диаметра вала желательно пользоваться стан­дартным рядом диаметров, приведенном в Приложении 2.

Пример 2. В поперечном сечении бруса d = 80 мм наибольшее касательное напряжение τ тах = 40 Н/мм 2 . Определить касательное напряжение в точке, удаленной от центра сечения на 20 мм.

Эпюра касательных напряжений в поперечном сечении представлена на рис. 2.37, б. Очевидно,

Пример 3. В точках внутреннего контура поперечного сечения трубы (d 0 = 60 мм; d = 80 мм) возникают касательные напряжения, равные 40 Н/мм 2 . Определить максимальные касательные напряжения, возникающие в трубе.

Эпюра касательных напряжений в поперечном сечении представлена на рис. 2.37, в. Очевидно,

Пример 4. В кольцевом поперечном сечении бруса ( d 0 = 30 мм; d = 70 мм) возникает крутящий момент М z = 3 кН-м. Вычислить касательное напряжение в точке, удаленной от центра сечения на 27 мм.

Касательное напряжение в произвольной точке поперечного сечения вычисляется по формуле

В рассматриваемом примере М z = 3 кН-м = 3-10 6 Н• мм,

Подставляя числовые значения, получаем

Пример 5. Стальная труба (d 0 = l00 мм; d = 120 мм) длиной l = 1,8 м закручивается моментами т, приложенными в ее торцевых сечениях. Определить ве­личину т, при которой угол закручивания φ = 0,25°. При найденном значении т вычислить максимальные касательные напряжения.

Угол закручивания (в град/м) для одного участка вычисляется по формуле

В данном случае

Подставляя числовые значения, получаем

Вычисляем максимальные касательные напряжения:

Пример 6. Для заданного бруса (рис. 2.38, а) построить эпюры крутящих моментов, максимальных каса­тельных напряжений, углов поворота поперечных сечений.

Заданный брус имеет участки I, II, III, IV, V (рис. 2. 38, а). Напомним, что границами участков являются сечения, в которых приложены внешние (скру­чивающие) моменты и места изменения размеров попереч­ного сечения.

строим эпюру крутящих моментов.

Построение эпюры М z начинаем со свободного конца бруса:

для участков III и IV

Эпюра крутящих моментов представлена на рис, 2.38, б. Строим эпюру максимальных касательных напряжений по длине бруса. Условно приписываем τ шах те же знаки, что и соответствующим крутящим моментам. На участке I

Эпюра максимальных касательных напряжений пока­зана на рис. 2.38, в.

Угол поворота поперечного сечения бруса при посто­янных (в пределах каждого участка) диаметре сечения и крутящем моменте определяется по формуле

Строим эпюру углов поворота поперечных сечений. Угол поворота сечения А φ л = 0, так как в этом сечении брус закреплен.

Эпюра углов поворота поперечных сечений изображе­на на рис. 2.38, г.

Пример 7. На шкив В ступенчатого вала (рис. 2.39, а) передается от двигателя мощность N B = 36 кВт, шкивы А и С соответственно передают на станки мощности N A = 15 кВт и N C = 21 кВт. Час­тота вращения вала п = 300 об/мин. Про­верить прочность и жесткость вала, если [ τ KJ = 30 Н/мм 2 , [Θ] = 0,3 град/м, G = 8,0-10 4 Н/мм 2 , d 1 = 45 мм, d 2 = 50 мм.

Вычислим внешние (скручивающие) моменты, приложенные к валу:

Строим эпюру крутящих моментов. При этом, двигаясь от левого конца вала, условно считаем момент, соответ­ствующий N А, положительным, N c — отрицательным. Эпюра M z показана на рис. 2.39, б. Максимальные напряжения в поперечных сечениях участка АВ

Относительный угол закручивания участка АВ

что значительно больше [Θ] ==0,3 град/м.

Максимальные напряжения в поперечных сечениях участка ВС

Относительный угол закручивания участка ВС

что значительно больше [Θ] = 0,3 град/м.

Следовательно, прочность вала обеспечена, а жест­кость — нет.

Пример 8. От электродвигателя с помощью ремня на вал 1 передается мощность N = 20 кВт, С вала 1 по­ступает на вал 2 мощность N 1 = 15 кВт и к рабочим ма­шинам — мощности N 2 = 2 кВт и N 3 = 3 кВт. С вала 2 к рабочим машинам поступают мощности N 4 = 7 кВт, N 5 = 4 кВт, N 6 = 4 кВт (рис. 2.40, а). Определить диаметры валов d 1 и d 2 из условия прочности и жесткости, если [ τ KJ = 25 Н/мм 2 , [Θ] = 0,25 град/м, G = 8,0-10 4 Н/мм 2 . Се­чения валов 1 и 2 считать по всей длине постоянными. Частота вращения вала электродвигателя п = 970 об/мин, диаметры шкивов D 1 = 200 мм, D 2 = 400 мм, D 3 = 200 мм, D 4 = 600 мм. Сколь­жением в ременной передаче пренебречь.

Нарис. 2.40, б изобра­жен вал I. На него поступает мощность N и с него снимаются мощности N l, N 2, N 3.

Определим угло­вую скорость враще­ния вала 1 и внешние скручивающие момен­ты m, m 1, т 2, т 3:

Строим эпюру крутящих моментов для вала 1 (рис. 2.40, в). При этом, двигаясь от левого конца вала, условно считаем моменты, соответствующие N 3 и N 1, по­ложительными, а N — отрицательным. Расчетный (макси­мальный) крутящий момент N x 1 max = 354,5 H *м.

Диаметр вала 1 из условия прочности

Диаметр вала 1 из условия жесткости ([Θ], рад/мм)

Окончательно принимаем с округлением до стандарт­ного значения d 1 = 58 мм.

Частота вращения вала 2

На рис. 2.40, г изображен вал 2; на вал поступает мощность N 1, а снимаются с него мощности N 4, N 5, N 6.

Вычислим внешние скручивающие моменты:

Эпюра крутящих моментов для вала 2 показана на рис. 2.40, д. Расчетный (максимальный) крутящий момент М я max» = 470 H-м.

Диаметр вала 2 из условия прочности

Диаметр вала 2 из условия жесткости

Окончательно принимаем d 2=62 мм.

Источник

Читайте также:  Ремонт регулятора напряжения ваз 2110