Меню

Формула разрушающего напряжения при растяжении



Растяжение-сжатие.

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Читайте также:  Как работает диод с переменным напряжением

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε ‘ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε ‘ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно . В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность , пластичность , хрупкость , упругость и твердость .

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l и начальным постоянным поперечным сечением площади A статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

Читайте также:  Автопреобразователь напряжения ritmix rpi 3002

диаграмма растяжения стали

где Δl = l — l абсолютное удлинение стержня; ε = Δl / l — относительное продольное удлинение стержня; σ = F / A — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Формула разрушающего напряжения при растяжении

Величину напряжения в растянутом или сжатом стержне обычно принимают за основной критерий для суждения о прочности той конструкции, элементом которой служит данный стержень. Поэтому расчет фермы, например, сводится к тому, чтобы определить усилия во всех элементах и, зная площади сечений, найти напряжения по формуле

Величину действующего напряжения сравнивают с так называемым допускаемым напряжением, которое принято обозначать буквой а в прямых скобках; условие обеспечения прочности будет

Читайте также:  Определить угол сдвига фаз между напряжением

Допускаемое напряжение выбирается в зависимости от материала и условий службы данного сооружения. Если речь идет о пластическом материале, например стали, то, очевидно, допускаемое напряжение не должно превышать предела текучести. В то же время допускаемое напряжение нельзя принимать равным пределу текучести, необходимо иметь некоторый запас прочности на случай перегрузок в процессе эксплуатации, неточного изготовления стержня (сечение меньше, чем предусмотрено чертежом), отклонения свойств примененного материала от тех свойств, которые установлены при испытании образца, и так далее. Поэтому для пластических материалов принимают:

Здесь — коэффициент запаса прочности по отношению к пределу текучести; этот коэффициент всегда больше, чем единица. В строительных металлических конструкциях, например, обычно .

Хрупкие материалы, такие как чугун, бетон, естественные и искусственные камни и другие, не обнаруживают заметных остаточных деформаций, они разрушаются сразу, лишь только напряжение достигнет величины так называемого предела прочности или временного сопротивления . Для таких материалов

Здесь — запас прочности по отношению к временному сопротивлению.

Вообще, если принять условно за разрушающее напряжение то напряжение, при котором становится невозможным выполнение конструктивной функции изделия, то допускаемое напряжение есть результат деления разрушающего напряжения на коэффициент запаса прочности.

Вопросу о рациональном выборе коэффициента запаса прочности посвящена обширная литература. Важность его чрезвычайно велика, так так снижение коэффициента запаса означает экономию материала и расширение технических возможностей. Мы вернемся к этому вопросу впоследствии, а пока заметим, что для строительных конструкций нормы допускаемых напряжений узаконены и являются обязательными при всяком строительном проектировании.

В машиностроении, вследствие большого разнообразия применяемых материалов и типов нагрузки, узаконенные общеобязательные нормы отсутствуют, однако отдельные ведомства, крупные заводы и проектные организации обычно имеют свои нормы допускаемых напряжений, которые вырабатываются с учетом производственного опыта.

Если допускаемое напряжение известно, то расчет на прочность сводится к обеспечению выполнения неравенств:

Заметим, что расчет на прочность при сжатии по приводимой формуле действителен только для коротких стержней; желая рассчитывать по этой формуле длинные стержни, нужно значительно уменьшать величину допускаемого напряжения (см. гл. XII, § 142).

Источник

ISopromat.ru

Обозначения в формулах:

Закон Гука

Формула для расчета напряжений в поперечном сечении стержня

Формула для расчета напряжений в стержне

Условие прочности

Расчет минимальной площади поперечного сечения бруса

Формула для подбора площади поперечного сечения стержня

Расчет допустимой величины внешней растягивающей/сжимающей силы (определение грузоподъемности)

Допустимая сила при растяжении (сжатии)

Формула для расчета деформаций

Расчет перемещения сечений

Формула перемещения сечений
Здесь: δ i — перемещение рассматриваемого сечения,
δ i-1 — перемещение предыдущего сечения,
Δ li — деформация участка между указанными сечениями.

Напряжения в наклонном сечении стержня

Здесь α — угол отклонения сечения от поперечного.

Источник